
POLOO137239
POL00137239

Gartner

Gartner Consifithig

POL-BSFF-0000026

POLOO137239
POL00137239

NM ~, r r Mr , r rt ! i • . r

- `r

I lit• r o. • .
 WJ1

1
, r. r

II II
 '

s
j r

r .NDl o IIti•.
• r « • . • •

1. Necessary technical support functions such as Estate Management, ement, User access
control , security, etc.

POL has commissioned ujitsu Services to upgrade r^ade on orn to Horizon Can-Line.

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 1

POL-BSFF-0000026 0001

POLOO137239
POL00137239

is ► ► ii ► ► .; ♦:, i

The primary objective of the upgrade is to reduce costs of the Horizon
system to POL.

'WMb] iiiiIl •• - r • • - •r P•

However the HNG design architecture should align with POL's emerging IT strategies
for future growth (see next slide)

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0002

POLOO137239
POL00137239

a .

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 3

POL-BSFF-0000026 0003

POLOO137239
POL00137239

■ Our objectivity ensures our approach and findings are based on sound data.
■ Objective approaches and findings foster outcomes geared towards your

organisation — not solution driven by vendors or system integrators.

a Our understanding ensures that we acknowledge the obvious, but more
importantly understand the subtle, complex influences and interrelationships
among market trends that will, together, materially affect your strategy.

■ Using proven data means that analyses are rooted in facts, not based
on assumptions and extrapolation.

* We develop logical and rigorous approaches that leverage our knowledge.
Our methodologies allow us to incorporate a range of data, ask the right
questions and develop traceable, defendable results.

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

r, A

POL-BSFF-0000026 0004

POLOO137239
POL00137239

[s] 1 [1.d IYL*Is] I I ii F {k'A [TA1

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 5

POL-BSFF-0000026 0005

POLOO137239
POL00137239

II ii ' i S - -
-1(1
 # s so I - s - s; n;

I1!
.w •IiD{I à II lIlLIiiTIt!JJ

_

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0006

POLOO137239
POL00137239

Smart card handlers

Call Centres

Consumer access to "virtual branch" services over the Internet 1

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0007

POLOO137239
POL00137239

1rntli

Perform identity validation using third party services, such as credit agencies.

B2B "crosschecking": Mr. Jones just deposited GBP 20,000 is this
reasonable?

Post offices enter a brand new line-of-business with a more-complex multi-
step business model

For example, consider selling health insurance where a physical examination is
required

A post office terminal or a kiosk might be fitted out with a software abstraction
of a PIN pad.

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0008

POLOO137239
POL00137239

E1111 ii I4!I I! •

Ex

Major partners could develop their own apphcatappl ications (clients) that invoke HNG
components (services)

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0009

POLOO137239
POL00137239

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 10

POL-BSFF-0000026 0010

POLOO137239
POL00137239

' 1„
ME=

r r r~
.:r

rt r r r: r r *r

This is essentially the inverse of Objective 2.

Horizon On-line Design Review Page 1 1 Gartner Consulting Engagement #222387830-31July 2008
Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0011

POLOO137239
POL00137239

The two primary forms of appcaton integration are:
• ~s appUcaUon to application" (A2A) integration of the enterprise's applications
• "h i i c c +rr hi icinccc I ° (1 in+r rir° F~r~n H fwwwor n th r nlir flnnc of r ic n r f

organizations.

Source: Gartner Research

Horizon On-line Design Review Page 12 Gartner Consulting Engagement #222387830-31July 2008
Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0012

POLOO137239
POL00137239

What is needed is a "Lego lock" approach . . . but the blocks are coming
from different parties.

"Plug and play" is another way to think of the problem . . . but Windows plug
and play happened only because Microsoft was dominant (and wealthy)
enough to make it happen.

ii 4.] ii rzi I iii ii i1tIIYIf1 II

The best chance of realizing the qoas lies in

. Use of a "service-oriented ar.c It ture" (S OA) to a m the design

2. Use of Internet (Web) technology and protocols

3. Reliance on industry standards that are vendor-neutral and relevant to
SOA and the Web

4. Use of robust computer-to-computer "middlewar " to make integration
easier and more reliable.

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 13

POL-BSFF-0000026 0013

POLOO137239
POL00137239

L17 flE rIT

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 14

POL-BSFF-0000026 0014

POLOO137239
POL00137239

r .

r

w 0

A

I nterface I nterface
Proxy

A

Back end separated from front end

Separately standing interface definition

Loosely coupled deployment

Usable and useful across applications

Source: (iartncr Research

!«` it i♦ w i' ! ! ! • ! '!

► • :~. . . . ♦ ~.
♦ ! - ! :: ! ! ! ! :

_►
- l: . _ t:

► :: r: ► is «

1!

[eflj iii:] L.1iI1JI [11I
Horizon On-line Design Review

Engagement #222387830-31July 2008
Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 15

POL-BSFF-0000026 0015

POLOO137239
POL00137239

Services

Components N

Methods`

Subroutines

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Source: Gartner Research

Page 16

POL-BSFF-0000026 0016

POLOO137239
POL00137239

AternaUve

SOAP/XML/JMS Service
SOAP/XML/SMTP

Source: Gartner Research

Page 17

POL-BSFF-0000026 0017

POLOO137239
POL00137239

I ii

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

r ,.

Source: Gartner Research

POL-BSFF-0000026 0018

POLOO137239
POL00137239

. a Service
Interfaces'-.~---

o f f

p,

~Q I r

unknownw
'. ..

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Source: Gartner Research

Page 19

POL-BSFF-0000026 0019

POLOO137239
POL00137239

Segregation 1
Application Design Teams:

• Service consumers
• Service implementations

Infrastructure Design Team (the future SQA CoE)

'o .s g • '• •
y

S1
r r r r r: tr.iiiL(J

• "
•

~'"' a w l w yr '~ • a r •~ ~~`'

Test, Test and Test
Han for at least 25% of development effort on integration testing

•m ' • w +

Source: Gartner Research

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 20

POL-BSFF-0000026 0020

POLOO137239
POL00137239

rr.rir 'nr

The "Plumbing" for Modern Applications

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 21

POL-BSFF-0000026 0021

POLOO137239
POL00137239

øi1 Yi r !AJLP

ikii 0] I II 1]IYA[II 1iuii1 J

Ii1OI!If1l[i]i't!UiI

Middleware is the software
"glue" that helps programs
and databases work together,
even though they may be on
different computers.

Middleware is not inherently
complicated or mysterious,
but it can seem that way if the
concepts and terminology are
not explained.

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 22

POL-BSFF-0000026 0022

POLOO137239
POL00137239

_Custom iicati rs

Portal

Access:
Terminal
Service

Event
Addressing
Monitoring

Multichannel

QOS:
Transactions

Security
Provisioning

Management

Ckstering:
Load Balancing
Failover
Grid Dynamics

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Source: Gartner Research

Page 23

POL-BSFF-0000026 0023

POLOO137239
POL00137239

. a.

Application
Ems_

Adapter

~.

l
F

Application.

...... .. .
F `

.' .;: Adapter

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Source: Gartner Research

POL-BSFF-0000026 0024

POLOO137239
POL00137239

gyration Suite
Pssaainn

Network Network
Software Software

Capabilities include ESB features, plus more. The two are becoming more and more dike.

Source: Gartner Research

Horizon On-line Design Review Page 25 Gartner Consulting Engagement #222387830-31July 2008
Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0025

POLOO137239
POL00137239

Horizon On-line Design Review Page 26 Gartner Consulting Engagement #222387830-31July 2008
Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0026

POLOO137239
POL00137239

:1 [e : 17 i1TRrnT1 'zr ''

kryA P1 [k1 .iUI T1 .:.

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 27

POL-BSFF-0000026 0027

POLOO137239
POL00137239

r : S

.. 1 iii' Ii ; r . r

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0028

POLOO137239
POL00137239

Documents are well written, thorough for the most part

Include Assumptions

Include Risks / Risk Mitigation Approach

One key area — "PDL scripts" -- was not covered in the architecture documents. (Fujitsu
Services has since provided supplementary information.)

:lTfli •: i *, *: s : • •.. r M" " data « • ■ J t. 1'1r

'.klI siidj11 hJAl ii I 1ri
• •

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 29

POL-BSFF-0000026 0029

POLOO137239
POL00137239

I High-Level View - Some dul Omitted
3rd Parties External

II Business of ata
Logic II

II Presentation

II Layer
CI

II w

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Data Centre

Branch PCs

Page 30

POL-BSFF-0000026 0030

POLOO137239
POL00137239

Network traffic is minimized by
sending completed transactions
to the data center.

Business logic is determined by
"scripts" which are interpreted by
the Process Definition Language
interpreter on the Branch PCs.

IN
Branch

Database

Branch Data Services

L = = = = = = = J
Transactions

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Data Centre

Branch PCs

Page 31

POL-BSFF-0000026 0031

POLOO137239
POL00137239

• rr • • - . ! rr r - •• • - IJsfllIII.J[.].k1iIIiPli r

Edits

Also see the diagrams in Appendix A.
Horizon On-line Design Review Page 32

Gartner Consulting Engagement #222387830-31July 2008
Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0032

POLOO137239
POL00137239

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 33

POL-BSFF-0000026 0033

POLOO137239
POL00137239

Business logic is not encapsulated in services, and it resides on client
PCs— not at the data centre.

• Business logic and (variable portions of) presentation logic are mixed
together in the same scripts.

• Externa Web services can be invoked, from the ranch PCs, via proxy
services at the data centre.

POL-BSFF-0000026 0034

POLOO137239
POL00137239

.......

13.1.1 Services are assumed to be stateless

Services will be stateless and self-contained within one request/response exchange. . . .This assumption is consistent with the
Post Offices requirement that the architecture is to be according to SOA principles.

• • . «_ • 4•

We have worked under the assumption that no further software licences for third party software will be acquired,
and that what is provided by Interstage is our limitation. This assumption is important to make explicit, as it has guided
some of our architectural decisions, such as:

-Creation of a custom NIO Integration Framework: An alternative to this framework, or at least the potential complexity of it
would have been to get a licence for a highly scalable messaging system, such as IBM Websphere MO and build on top of
that. However, with third-party licences being deemed unsuitable due to commercial and cost reasons ...

13.1.3 The network is limited to synchronous requestiresponse interactions from the counter

We have assumed, given the network topology and architecture that the most feasible and reliable mode of interaction
between the counter and server is a traditional request/response synchronous mode of operation over http.

There might have been a case for revamping the estate by creating a more unified integration backbone architecture using
messaging and moving away from the current approach based on point-to-point integration with batch jobs and direct
network calls to interrelated systems, which makes for a somewhat tightly coupled architecture. The architecture does
open the way for the possible future implementation of an Enterprise Service Bus, something that should be
considered as part of long term planning for the FOOL estate.

@Copyright Fujitsu Services Ltd 2007 ~K~7►~I►~ll~'Z~l/~1'~1►[K~7~4~'1~7~~[~h

Horizon On-line Design Review
Engagement #222387830-31 July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 35

POL-BSFF-0000026 0035

POLOO137239
POL00137239

13.2.1 Implementation risk of custom NIO integration framework

There is an inherent risk in implementing the proposed NIO integration framework (section 2.4.3.2) proposed in this
document. The NIO API and writing concurrent code is error-prone and complex to test. It is possible that if the
framework is not written by experienced and highly skilled developers that it will not be viable.

13.2.1.1 Risk of occurrence

It is dependent on development experience.

If developers are inexperienced in developing I/O and concurrent applications, the risk is very high. If developers are
skilled and experienced in writing I/O and concurrent applications the risk will be low to medium.

13.2.1.2 Risk impact

Very high — any integration with third party applications such as DVLA, Banking etc will fail.

13.2.1.3 Risk mitigation

Only allow the most experienced and skilled developers with experience in concurrent programming write any code on
this particular component. Furthermore, it is important to do testing rigorously, including unit testing based both on
deterministic and probabilistic approaches.

13.2.2 Implementation risk of custom NIO HTTP Multiplexer

(text similar to 13.2.1)

©Copyright Fujitsu Services Ltd 2007 COMMERCIAL IN CONFIDENCE

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 36

POL-BSFF-0000026 0036

POLOO137239
POL00137239

M l ' . r
\\ \ p~\

\~,

`
a.

\\ pp \ O \ Q p \ Q~i W~\\
 `:~."

.

G - XY Architecture E :\ \ ': ,\ `\ ''`k\ :

, .` v c ..:. E ~` ' :

iiiJ.i !J .it Tir.aii! 1! It t itik!4iit.i ii

- - - I
_ IS A I A - e i s is

-. S " •

:,: i A. "

♦ i ,

Horizon On-line Design Review Page 37
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0037

POLOO137239
POL00137239

1=

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0038

POLOO137239
POL00137239

integrated i r r :: r . . :. r . r

i, a I. it `• • • ♦ i . ` • • " • ` ! ` • • •

•' a •"• a''• r r r•i •a aI • •' • te a' • a, I• `

• a i • • r a • •! • i • •I ~a r' • ~•" • a •'

ai11 111 r only• ' • r I• • • • • •:: ` a r' • •' • • r

•, R` iii i, *

4. For other situations the user interface + business logic (script + interpreter) presents a
substantial barrier.

For a Web browser, an "Ajax" approach with XHTML & JavaScript might replace the Swing
& PDL script architecture?

In situations where only a few of the transactions are required, it would be easiest to simply
re-code the transaction in a traditional fashion, and use only business-oriented reference
data such as prices.

Horizon On-line Design Review Page 39
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0039

POLOO137239
POL00137239

Will it be possible to integrate software components from other suppliers into the
Horizon On-Line system?

Answer:

YES — If the new software components are
well-encapsulated

1. If they are SOA or Web Services (common)

2. Or if they can be "wrapped"

YES — because the HGN-X architecture

has already provided proven methods for

invoking external services through

"proxies" at the data centre.

Horizon On-line Design Review Page 40 Gartner Consulting Engagement #222387830-31 July 2008
Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0040

POLOO137239
POL00137239

Answer:

YES — For Data Services

NO — For transaction capture and business logic
x The PC-based business logic (script + interpreter) presents a substantial barrier.

11
ll 11
ll fl

ll [l

Horizon On-line Design Review Page 41
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0041

POLOO137239
POL00137239

New CustomeNFadng Devices?
Yes, but difficulty wil l vary depending on the device and its ownership

2. Ability to Use 3111 Party Services?
Yes

3. Use of POL Services by Partners?

Overall, the HNGX architecture is first ra2 .23rtr r d morid
changing it in any substantial way.

Placement of business logic on the Branch PCs and the use of a compact interpreter
maximize the use of modestly-configured PCs and minimize the load on the network.
All solution architects have t0 deal with "trade-Offs"; the HNGX architects crafted
strong solution that would be hard to improve upon.

Horizon On-line Design Review Page 42 Gartner Consulting Engagement #222387830-31July 2008
Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0042

POLOO137239
POL00137239

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 43

POL-BSFF-0000026 0043

POLOO137239
POL00137239

`' .. Encapsuate Busness Logc (f possbe)

The business layer and presentation layer are currently too-tightly coupled,
making it hard to re-use business logic in new situations

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0044

POLOO137239
POL00137239

3. Custom Transformers and Protoco Adapters

Pug into the ESB or Integration Suite

• Future transformations may be done in the ESB or Integration Suite

Offthe shelf adapters are available

Also see Appendix A: The Enterprise Service Bus. Communication Backbone for SOA; Where to Use
an Enterprise Service Bus and Why and Open Source in ESB Suites, 2008

Horizon On-line Design Review Page 45 Gartner Consulting Engagement #222387830-31July 2008
Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0045

POLOO137239
POL00137239

Horizon On-line Design Review Page 46 Gartner Consulting Engagement #222387830-31July 2008
Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0046

POLOO137239
POL00137239

a

Gartner's "Magic Quadrant for Application
Infrastructure for Back-End Application

Mr & 'are
Integration Projects" rates vendors that
offer various products for this purpose,

BFA.Sy including ESBs and Integration Suites.

The HNG-X project does not currently
stein.

p j use
this type of product.

sureM ytms.

s

, tom t w AG
Since publication, Oracle has acquired
BEA and Software AG has acquired

Pr rt webMethods.
F o ftwa

Ma Sow E Ieprss gaPe
Way Soft , t1r

l I0NA Tchnøk s

> ra; '

nick players Visionaries

ccmpletenes of its

As o Jae W

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents 02008 Gartner, Inc. All rights reserved.

Source: Gartner Research

Page 47

POL-BSFF-0000026 0047

POLOO137239
POL00137239

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026 0048

POLOO137239
POL00137239

Introduction

More
Risk

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Source: Gartner Research

Page 49

POL-BSFF-0000026 0049

POLOO137239
POL00137239

" # *

F iYA [SAL 11111 -I 1i Ii IItIYLI I1 111YA-

~- se -g
- o- UtIiEIiiii III1E...a

- ~►IrI. iii1 IS i.j

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 50

POL-BSFF-0000026 0050

POLOO137239
POL00137239

' ::

1 S model '" a ..: •
& 111 iiishared r: :

jjii.IFUMa

5. A process by which existing software is cataloged, understood, and
harvested for services

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 51

POL-BSFF-0000026 0051

POLOO137239
POL00137239

W11IYIH ilhrin . f

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 52

POL-BSFF-0000026 0052

POLOO137239
POL00137239

of Services Deployed
of Consumer Applications Deployed

Reuse # of Services/ # of Consumers
of Services Shared by at Least Two
Applications
Average Sharing Ratio

Volume of Service Requests
QOS `' Amount of Requests per Service

Service Request Response Time

Number of New Services Developed per
Cost Each New Consumer Application

Reduction Time to Deployment for New Consumer
Applications
Cost of Application Maintenance

Horizon On-line Design Review
Engagement #222387830-31 July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POLOO137239
POL00137239

Ii

L 1

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Source: Gartner Research

POL-BSFF-0000026 0054

POLOO137239
POL00137239

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 55

POL-BSFF-0000026 0055

POLOO137239
POL00137239

i. ! s

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 56

POL-BSFF-0000026 0056

POLOO137239
POL00137239

Horizon On-line Design Review
Gartner Consulting Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 57

POL-BSFF-0000026 0057

POLOO137239
POL00137239

Post 3rd Parties .- Batch Rost
Office (ecl, British Gas Bill Payment, Office

Cashed Postal Orders)
External Cfient Tier Online

Clicnl N
Chan- I

App f External Client I

......

I' cation r Tier

Architecture
tl

(Overview) E Data Tier

Branch Access Tier

U1 Via Remote Services
Interface (RSI) - not
shown

©Copyright Fujitsu Services Ltd 2007

(APOP, NPS, TES,
PAF, HeID)

Branch Database

COMMERCIAL IN CONFIDENCE

Batch pntM ', RDS
Clierdi her

. Other FReference
---- ources: Places

..i; 9fmTBDCe~:: tl
Data Centre

A#ana9em9FrF n
s~M tl Boundary

i tl
a

:g acy Data (TPS, °
'BPS DRS, LFS,
RD MG/RD OS)

tl

~ tl

tl

tl

tl

tl

tl

tl

Branch
Offices

From Solution Architecture Outline

POL-BSFF-0000026 0058

POLOO137239
POLOO137239

BRANCH ACCESS LAYER

-------------,
Web

Services

Service Router

Message
Transformers

The BAL serves as the interface between the counter and other data centre systems. It communicates
with the following servers:

• Banking Agents —this is to perform banking transactions on behalf of a counter

• Web Service Agents —to allow a counter to ccimmunicate with other external systems.

• BRDB —the counter accesses the BRDB through the BAL servers

• Key Management Server — to retrieve any cryptographic keys or seeds that may be required for
the BAL or the counter.

• Management Interface — A JMX based management server is used to control and monitor BAL
servers.

&'Y9ttS~s S:ioiaA~t~4

CamMw

Fifltire I — BAL Eirvironmeut

BAL servers are stateless, the number deployed can be easily altered so the eight servers shown inthe
diagram above should be used as a guide only, less or more servers could be deployed as is required.

@Copyright Fujitsu Services Ltd 2007 COMMERCIAL IN CONFIDENCE

XML over HTTP

(not SOAP)

Via Remote
Services Interface
(RSI) - not shown

From Branch Access Layer

POL-BSFF-0000026 0059

POLOO137239
POL00137239

cm p Workflow Subsystem Realisation

Workflow EnactmentEngine

arreal ises,,

I pol:: Interpreter I

+. eXG cll i..o 1 : 0 b CI
+ exe ru ter CE t ss on (S trio g, Id a p Objec
{ gei:_u^. .ext . LScr!ptwer.text
+ cot? , '1 r'II, . r ictC. a rite at
+ set,'. 1 ' .oI i-= toc': east void
+ sell Jr it ,' X ' ' is 0 DJe r;t) so
+ Se t P. 10 t<: :r. e((trnc) : void _ . .

+ se I: P,1 ¢:t h:o:lN., rr. , t:ing) void
+ set criptl;:i cr':pt) : .;o:d

-script -context

jexl::Scr1pt P0LscripIConlext
IScriplExecu tic r Ste te

p dl::J e XIS cr i ptC o me at
execute(JexIContext) : 0 bjact
e x e:: a te(J ex lr:o nt e.xt, let, int) : Cbjnrt

-F closet : Ob ect gone;-4.(; ;[ring ~) J
a : i ,(.a L a;"a ah e.c cmm a ns.jex l .S :+ . , + ratAct:u^RetsrnV a Iue(j : 0b e':

+ , ,;: s is ,l ict
+ gall1, :I is (in I, in t) Object
+ ga II' oHI . or ti :-, tj . lil t
+ g alt alt :):I "I ;i i Mop
+ et=20f n, . o 1 :a ';Aa n agerO: Rafe re ncoia atarvt a
+ gatlH e to rn il5e p t h. ,) 1st
+ n1.r toei i. n,t : Int
+ ar

1 .,i : i_ n (int, 1 nt) : boelear.
1: :,i t) void

~• setdude< tatn(int, irt, Object) : void
+ ,e1.... ... 1 in t, r. t'I void
I- sal , ,',l , , l vr; id
+ toStringi, : St:inil

n Fujitsu Services 2008

POL-BSFF-0000026 0060

POLOO137239
POL00137239

aPancLire /

s tai»
AP-A1 ipt

Esp t ,4P-PDC sai pt
asinteimadiale VA

cb - ert AP-ADC
XNL into PCL

Colavcr PCL tc
Pderersa3 Data
CdivorySeri

n Fujitsu Services 2008

weloaty>
Velocity NIacros

POL-BSFF-0000026 0061

POLOO137239
POLOO137239

r-------------------- I

Service Router
(custom Java)

--------------------'

r--------------------

Message
Transformers for
Multiple Protocols

(adapters)

@Copyright Fujitsu Services Ltd 2007

The Online Service Routine architecture wi ll not run within a J2EE container. This is due to two factors:

• Use of a custom! HTTP multiplexer: This utilises custom threading and l0 code to efficiently
manage resources during peak server loads.

• Custom NIO connectivity framework: This is the most efficient way for Java to handle socket
based comrrlunications.

! roa,^ rti r:zr

i i r^ 7

!z .>~3a~:•~e I I ,3i~a F i T I JrN.t,3i,er'i y:
f

.;:~•;

,.k

 5
E

r4

!:<a f'F»>' r)39 (Ao:: T 'Y , ~r LFf T x k Ir.Y• r, r i,< f s wel .,n~ Y4:e ,Ee. s;>S

C:oE Flxz :#xrs 01Evt<:i~r,isE« G' sr. a. .I' x '

COMMERCIAL IN CONFIDENCE

xetc r ,y ?x,o

From Branch Access Layer

POL-BSFF-0000026 0062

POLOO137239
POLOO137239

POL-BSFF-0000026 0063

POLOO137239
PCL001 37239

External Message-based Clients External Web Services
External
Systems LINK A&L CAPO Ir Streamline a-pay DVLA 1 CAConnector MoneyGram

CSM

.....

- ---- - - - -- ---- — —

..

—

...

— Data Authorise
.

n Agents Network Persistent Web Services
Centre Store

NBS DCS Eli ! APOP PAF DVLA
Desk

MoneyGram

Training Web Service

APOP, DVLA, MoneyGram. NBS,
DCS, ETS

Branch Database

Training j Live

Branch Access Layer
(Authentication, recovery and service routing)

@ Copyright Fujitsu Services Ltd 2007

CSM

COMMERCIAL IN CONFIDENCE

The interfaces between the online service components in the Data Centre and the e?'i:.rr1..;1 c'I ',errts are
donuI 1 :t i n 1o1:1 I tel k p l II hcn Interface :t0e0Itl t err IAIS' 1011.1 Iii Irhy;; ern= b+! a
f I I I - I '1nf t I anii a4 ITl.,i L: .Ie 2 below. The interfaces between; the - lire service
r r ; nrrl_ el tdcent 11« irrorridi rhrr l ', tie rielrrrcd by an AlS only.

Clair Serake Mafaen Type RJS TIC

A&L NBS 508583 NBiIFSC26 NBIIFSA29

APOP .5PCP PL.GOL APAFSAe4 ink

CACornectcr Hers Des. cur l: I HA' TBA°

CAPD C_ Is,:: oven tern SKI'S NBfIF fug'

L' LA

L 1':10

L.re

1':

:15.0

I II

 \F ,..S

dLUO

NA n L J'1

: IAl 1

1:IBi1 -:!U:5

L J II d UU:

is 1 II LiUi

IN It 1.:

Pr,F~PAF :101

green:li AF:, FFill ;11lr2 SF'IF:,ino ::;30are
ores

Tehle 2 - Extern nl Interface Specifications

The set of external clients falls into two groups. those that use synchronous" web protocols (DVLA,
CACnnnertor and MoneyGrami and those trot a:;, asynchronous PAC message-based protocols

Gartner Notes:

1. Does not show new "service
huh" used to access external Web
Services.

2. "CSM" is Cisco Network (now
"ACI").

From Architecture - Online Service

POL-BSFF-0000026 0064

POLOO137239
POL00137239

!iw 111,1 '1111 iID1iR1IU(1ii1

A'i Tkiisii w J

Horizon On-line Design Review
Engagement #222387830-31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 65

POL-BSFF-0000026 0065

POL001 37239
POLOO137239

Gartner Research
............................

Publication Date: 3 May 2007 ID Number: G00143223

Roy W. Schulte

This research provides a definition and overview of enterprise service buses (ESBs). IT
managers, architects and developers who are building, buying or contracting for SOA
applications and services need to understand the role of ESBs for complementing basic
communication software stacks and development tools.

Key Findings

• ESBs are a type of middleware that combines support for service-oriented architecture
(SOA) and Web services with features from several older types of middleware. All ESBs
implement SOA service binding, message-at-a-time communication and related
features.

• ESBs support SOA applications better than traditional middleware because ESBs
separate communication and integration logic from the business appl ication logic.

• The industry has had some confusion about ESBs because the term is used to cover the
core bus technology, ESB products and ESB design patterns.

• ESB products contain more than just plain SOA-oriented communication buses.

Recommendations

• Companies implementing SOA on a large scale should add ESB technology to their IT
strategic plans and their technical architectures.

• See related Gartner research to understand ESB product features, packaging and
management issues:

• "Where to Use an Enterprise Service Bus and Why"

• "Enterprise Service Bus Usage Scenarios and Product Categories"

• "Succeeding With Multiple SOA Service Domains and Disparate ESBs"

© 2007 Gartner, Inc. andlor its Affiliates. All Rights Reserved. Reproduction and distribution of this publication in any form
without prior written permission is forbidden. The information contained herein has been obtained from sources believed to
be reliable. Gartner disclaims all warranties as to the accuracy, completeness or adequacy of such information. Although
Gartner's research may discuss legal issues related to the information technology business, Gartner does not provide legal
advice or services and its research should not be construed or used as such. Gartner shall have no liability for errors,
omissions or inadequacies in the information contained herein or for interpretations thereof. The opinions expressed herein
are subject to change without notice.

POL-BSFF-0000026 0066

POL001 37239
POLOO137239

ANALYSIS

The industry has been confused about ESBs, because the term covers the core service bus, ESB
products and ESB design patterns.

• The core bus is a communication backbone, a set of middleware capabilities that is built
into a variety of commercial products, including, but not limited to, those called "ESBs."

• Commercial products called "ESBs" contain features that include, but go beyond, the
core communication bus.

• ESB design patterns are SOA application topographies that take advantage of the
characteristics of ESB technology.

These are explained further in the next sections of this research.

The Core Service Bus Technology
The core service bus is a Web-services-capable communication subsystem that has the ability to
support optional mediation functions, particularly for SOA applications, but not limited to SOA
applications. To qualify as an ESB, middleware must:

• Implement synchronous and asynchronous program-to-program communication, moving
messages between SOA service consumer modules and service provider modules at
runtime. An ESB may also move files, database rows and other data.

• Support the fundamental Web and Web services standards, including Uniform Resource
Identifiers, Extensible Markup Language (XML), SOAP and Web Services Description
Language (WSDL). Almost all ESBs also move non-XML messages and data and offer
additional proprietary communication protocols.

• Implement service binding to create associations between SOA consumer and provider
modules.

• Have an architecture that enables it to apply optional intermediary functions to
messages in fl ight. Mediation functions can be added to the core bus to, for example,
inspect, validate, reroute, transform, enrich, log and track messages as they pass
through.

• Support typed messages, that is, messages for which contents are explicitly defined and
documented. This is necessary to implement many kinds of mediation.

ESBs support SOA applications better than message-oriented middleware (MOM), plain SOAP
stacks and other traditional middleware, because ESBs provide a way to plug in optional value-
added mediation and integration functions without having to implement a separate custom-built
proxy server or wrapper. ESBs make it easier to offload communication and integration functions
from the application developer, so developers can focus on the business logic. Some addressing
and pol icy concerns, such as security, protocol choice and quality-of-service options, may be
postponed to deployment time or runtime. This approach has major implications for development
tools, not just the ESB.

Small or simple SOA applications can run fine without an ESB. For example, they can use point-
to-point Web service connections supported by SOAP message handlers (SOAP/XML/HTTP
stacks), plain old XML (PDX) on HTTP or various forms of middleware. However, large, long-

Publication Date: 3 May 2007/ID Number: G00143223 Page 2 of 7

© 2007 Gartner; Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0067

POL001 37239
POL00137239

living or frequently changing SOA service domains benefit from the features provided by an ESB.
Further detai ls on the technical characteristics of ESBs and where they are helpful are included in
"Where to Use an Enterprise Service Bus and Why."

The core bus is rarely bought as a separate product. In almost all cases, companies acquire the
bus as part of a larger product, such as embedded in an SOA middleware infrastructure product
that contains many other features (see the next section) or in the operating system (for example,
Microsoft's Windows Communication Foundation [WCF] is the service bus in Vista and the
forthcoming Windows "Longhorn" server, and it can also run on Windows XP Service Pack 2 and
Windows Server 2003).

ESB products are just one of many types of SOA infrastructure product. SOA infrastructure
products are diverse in their packaging and labeling, but all contain the core SOA bus technology
(described above) and other features. SOA infrastructure products can be sorted into three
general categories, described in order of increasing levels of feature bundling:

• ESB products

• SOA platforms with development and presentation features

• Full SOA software stacks

ESB products are the most unbundled. Vendors tend to call their SOA infrastructure products
"ESBs" if their capabilities are limited to communication and integration tasks. ESB products have
the core bus (described above), and they typically include:

• Transformation

• A basic registry or name space that supports binding and some type of service
virtualization (for example, using a service name as an alias to bind to an alternative
service implementation)

• Content-based routing and basic service orchestration

• Security, including authentication and authorization, general ly working in conjunction
with external identity management, encryption and decryption services

• Optional adapters to files, database management systems (DBMSs), legacy platforms
and packaged applications

They often also have:

• Message val idation

• Some transaction management capabilities

• Message logging and auditing

• Protocol bridging

• Load balancing

• Failover

Publication Date: 3 May 2007/ID Number: G00143223 Page 3 of 7

© 2007 Gartner; Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0068

POL001 37239
POLOO137239

A product that is missing some of these features is still an ESB as long as it includes the core bus
and some subset of the "typical" or "often also have" functions.

An SOA infrastructure product that provides additional development, presentation and monitoring
features may be called an "SOA suite," "service grid," "integration suite," "Web services
framework," "composite application platform" or "service deployment platform." Such products
contain the core bus, some or all the "ESB product" features listed above, plus some or all the
following:

• Process modeling, long-running business process management, process simulation and
workflow services for human activities

• Repository or other metadata management tools

• Portal, Ajax, mobile and other presentation-related services

• Service monitoring and management capabilities for tracking availabi lity, response times
and other service-level issues

• Federated ("virtual") database and data service support

• Business activity monitoring

3. Full SOA Software Stacks

A full software stack for SOA applications bundles even more. If an SOA infrastructure product
contains many of the features described in the previous two categories, includes its own general-
purpose application server and is offered with a comprehensive application development
environment, it is more likely to be called an application platform suite (APS), business services
fabric, enterprise services infrastructure, integrated service environment (ISE), or portal platform
suite. The label business process management suite (BPMS) is used if process modeling,
simulation, management and workflow are emphasized.

In the absence of consistent vendor packaging and naming decisions, all product labels in the
SOA infrastructure market are somewhat arbitrary. We have outlined three general levels of
packaging: ESB product, SOA platform with development and presentation features, and full SOA
software stack with application server. However, commercial products are not consistently
assigned to those categories. The same product may be cal led an ESB, service grid, enterprise
service infrastructure, business service fabric, BPMS, APS or ISE, depending on who is talking
and what they think the listener wants to hear.

In almost all cases, companies do not buy one SOA infrastructure product from one vendor;
rather, they use products from several vendors (see "Enterprise Service Bus Usage Scenarios
and Product Categories").

The ESB ("SOA Backplane") Pattern

Using an ESB (or an SOA infrastructure product that is a superset of an ESB) has important
implications for SOA application architecture. An SOA application without ESB capabilities puts
consumer modules in direct contact with service provider modules. The intelligence for finding the
right service provider, orchestrating the flow, transforming messages and other functions is coded
into the consumer or provider modules (if such features are needed). By contrast, SOA systems
that use an ESB and related services to implement the concept of a "SOA backplane" offload
many of these addressing and mediation functions to the ESB and service engines that are

Publication Date: 3 May 2007/ID Number: G00143223 Page 4 of 7

© 2007 Gartner; Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0069

POL001 37239
POL00137239

plugged into the ESB. The programming model, techniques of service assembly and methods of
implementing various policy and quality-of-service levels are different when using an SOA
backplane. In this sense, an ESB implies a certain design pattern (the backplane) for the SOA
application elements. The pattern relies on the participation of ESB software, a custom proxy
server or something similar at runtime outside of the endpoint application modules themselves.
ESBs also have inherent design-time, development-time and deployment-time implications,
because developers use the development and administration tools associated with the ESB to
create and configure SOA elements.

Microsoft's WCF is a core SOA bus, but not exactly an "ESB product," because it does not have
embedded mediation functions. However, developers can use WCF to implement the ESB
pattern by adding BizTalk Server or a third-party integration hub to mediate the communication
(this revises earl ier Gartner reports that did not fully explain the distinction between the core
service bus, ESB products and the ESB pattern). Microsoft provides architectural guidance,
patterns and practices for implementing ESBs and a set of reusable BizTalk Server and NET
components.

Background

Origins of Commercial ESB Products

Progress Software was the first to use the term "ESB" and the first vendor to ship (in 2002) a
commercial ESB product with Web services support (Sonic XQ, renamed a year later to Sonic
ESB). A few ESB-like, commercial middleware products existed prior to that time, including
Fiorano's Tifosi, originally announced in 1998. It has evolved into Fiorano SOA Platform 2007, a
full-blown SOA infrastructure with Web services, orchestration and other modern features. It is
still actively marketed and supported. Candle's Roma, also announced in 1998, was another
pioneering implementation of this type of product. Roma was later renamed Pathwai and then
acquired by IBM when it bought Candle. Roma implemented the essential concepts of an ESB,
including SOA communication over a messaging backbone, but it was designed prior to the
introduction of Web service standards, and it had limited adoption.

Custom-Built ESBs

A number of large companies with far-sighted architects and sufficient technical resources built
their own custom middleware backplanes during the 1990s. These generally were implemented
as a set of libraries that acted as a super-application programming interface over a MOM product,
usually IBM's WebSphere MQ (formerly MQSeries) or occasionally over an object request broker,
such as lona's Orbix, or a TP monitor, such as BEA's Tuxedo. Like a modern ESB, these
backplanes insulated an SOA application from some aspects of communication, policy
implementation, addressing, security, logging and correlating replies to requests. However, most
did not have a formal service registry, integration features or metadata facilities for documenting
message schemas.

After the introduction of XML in 1998 and SOAP v.1.1 in 2000, many of these custom backplanes
were extended to support the Web services standards, essentially becoming home-grown ESBs.
Some Gartner cl ients continue to develop custom or semi-custom ESBs and ESB-like backplanes
for themselves. Developing a custom ESB from scratch is rarely practical, for the same reasons
that developing a custom MOM or DBMS is rarely practical. Most companies do not have the
expertise, the wi llingness to support it for the long term or the extreme business requirements that
would make a custom ESB necessary. However, a sizable minority of companies are good
candidates for semi-custom ESBs that can be assembled from a mix of open-source components
(for example, open-source MOM, SOAP stacks and transformation engines), proprietary

Publication Date: 3 May 2007/ID Number: G00143223 Page 5 of 7

© 2007 Gartner; Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0070

POL001 37239
POLOO137239

components and some custom code. Interest in open-source SOA infrastructure is growing to
serve the needs of these companies.

RECOMMENDED READING

"Five Principles of SOA in Business and IT"

"Enterprise Service Bus Usage Scenarios and Product Categories"

"Where to Use an Enterprise Service Bus and Why"

Acronym Key and Glossary Terms

APS application platform suite

BPMS business process management suite

DBMS database management system

ESB enterprise service bus

HTTP Hypertext Transfer Protocol

ISE integrated service environment

MOM message-oriented middleware

PDX plain old XML

SOA service-oriented architecture

SOAP Simple Object Access Protocol

WCF Windows Communication Foundation

WSDL Web Services Description Language

XML Extensible Markup Language

Publication Date: 3 May 2007/ID Number: G00143223

© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

Page 6 of 7

Gartner

POL-BSFF-0000026 0071

POL001 37239
POLOO137239

Corporate Headquarters
56 Top Gallant_Road_._..._
Stamford, C GRO .0
U.S.A. -.-. .-...-.....-.-

GRO
European Headquarters
Tamesis
The Glanty
Egham
Surrey, TW20 9AW
UNITED KINGDOM

GRO
AsialPacific Headquarters
Gartner Australasia Pty. Ltd.
Level 9, 141 Walker Street
North Sydney
New South Wales 2060

GRO
Japan Headquarters
Gartner Japan Ltd.
Aobadai Hills, 6F
7-7, Aobadai, 4-chome
Meguro-ku, Tokyo 153-0042

GRO -.-.-.
Latin America Headquarters
Gartner do Brazil
Av. das Napoes Unidas, 12551
9°andar—W_ orld Trade Center

GRO LSao Paulo SP
BRAZIL

- GRO

Publication Date: 3 May 2007/ID Number: G00143223 Page 7 of 7

02007 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0072

POL001 37239
POL00137239

Gartner Research
.......................

Publication Date: 13 February 2008 ID Number: G00155166

Roy W. Schulte

This research clarifies the difference between client/server and event-driven architecture
(EDA) design patterns. Architects, developers and business analysts must understand
when to use each pattern to make their applications effective.

Key Findings

• A service-oriented architecture (SOA) interface may implement a cl ient/server
interaction (typical ly a request/reply message pair), an EDA notification (one message)
or a conversation (a sequence of messages).

• Large SOA systems and systems of systems are multifaceted — some interfaces are
best implemented with client/server, others with EDA and a few should be
conversational.

• EDA is appropriate for time-sensitive asynchronous processing — when time is less
critical, data-centric solutions using files or databases are sufficient for asynchronous
processing.

• Within the client/server and EDA patterns, there are other important variations, including
Representational State Transfer (REST).

I'Z -I'ii•'~Titt

• Use SOA in all large, new composite applications and business processes to clarify the
application structure, facilitate data and code sharing, and enable incremental
maintenance and enhancements.

• Use client/server when components must collaborate to fulfill one business activity and
the flow of control is determined within the client component.

• Use EDA when components can be run asynchronously and can be minimal ly coupled.

© 2008 Gartner, Inc. andlor its Affiliates. All Rights Reserved. Reproduction and distribution of this publication in any form
without prior written permission is forbidden. The information contained herein has been obtained from sources believed to
be reliable. Gartner disclaims all warranties as to the accuracy, completeness or adequacy of such information. Although
Gartner's research may discuss legal issues related to the information technology business, Gartner does not provide legal
advice or services and its research should not be construed or used as such. Gartner shall have no liability for errors,
omissions or inadequacies in the information contained herein or for interpretations thereof. The opinions expressed herein
are subject to change without notice.

POL-BSFF-0000026 0073

POL001 37239
POLOO137239

ANALYSIS

In 1996, when Gartner published its first reports on SOA, we described it as an implementation of
client/server and didn't mention EDA. Some architects still think only of request/reply client/server
patterns when they design new SOA applications; however, most large systems and complex
business processes have asynchronous aspects that are not well-addressed by client/server.
These aspects may be addressed through EDA. This research describes the trade-offs between
these patterns.

Client/Server
In a client/server relationship, the client component sends a request message to a server
component, which responds by performing a function. The communication model is usually
request/reply, although in rare situations, a reply isn't needed.

Client and server are roles. A component ("A") is a client because it sends a request, and another
component ("B") is a server because it responds to the request. Client/server relationships have
been common for decades, particularly for interactions between an application program and a
system utility. For example, an application invokes a print server to put a file out on a printer.
However, in SOA applications, the server performs a business appl ication function, rather than a
system function.

One example is a client/server application that captures a customer address change from a Web
page, val idates the ZIP code, then updates its local database. The mainline portion of the
application that accepts the end-user Web input is client A. It uses a client/server relationship to
invoke an SOA service supplied by component B to val idate the street address against the ZIP
code. Component B could run on another computer in another department or even in another
company miles away. After receiving the reply from B, client A regains control and writes the new
address into the database.

Characteristics of client/server relationships:

• The client directs the flow of control by specifying which server to invoke and when.

The client delegates some of its work to the server and depends on the server. A server
can, in turn, act as a client to further delegate some work to another component, and so
on.

• The client connects to the server using a find-bind-invoke sequence. The coupling is
"loose" if it works indirectly — for example, in Web services, bind and invoke are
combined into one operation.

Client/server has many variations:

• The client usually suspends work until the reply is received; however, in some cases,
the client continues working after sending a request, and the reply is returned at a later
time.

• Client/server usual ly relates exactly one client and one server at runtime (just as a call
statement invokes one procedure, never zero or two). Client A can have a relationship
with multiple servers in succession, and server B can serve multiple clients in
succession, but each relationship is one-to-one.

Publication Date: 13 February 2008/ID Number: 000155166 Page 2 of 7

© 2008 Gartner; Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0074

POL001 37239
POLOO137239

• However, a client request may be sent to an intermediary, which then relays it to
multiple potential servers (this is "publish/reply"). The intermediary can select one reply
(for example, the first one) to return to the client or the client may receive multiple
repl ies.

• Some conversational interactions can be considered types of client/server patterns,
because a component performs a function under the direction of another. However,
state is maintained in the server between messages, so it's more tightly bound than in
request/reply client/server relationships, where the server is stateless after sending the
reply.

• REST is a unique form of client/server with characteristics that are different from those
of traditional procedure calls. REST can also be used to implement EDA. (A full analysis
of REST and conversational relationships is beyond the scope of this research.)

Most developers are comfortable with client/server, because it resembles the way subroutines are
invoked in a program. However, most business situations have asynchronous aspects that are
not addressed well through client/server.

Client/Server Limitations
Consider again an address change appl ication. A company may have a dozen or more
application systems (C through N) that maintain customer address data. (Whether it's smart to
have multiple, partially redundant databases is irrelevant; it's a common situation.) When
application A captures the address change, it must notify systems C through N. The address
change is a business event — a meaningful change in the state of something relevant to the
business.

It is possible, although intolerably clumsy, to build a client/server solution for this scenario. The
original client A would invoke an address change function in each of the other systems. Client A
calls application C, sending the new address in the request message. C returns an
acknowledgement. A then calls D with a similar request, and so forth. After a dozen client/server
interactions, systems C through N would have posted the change to their respective databases.
However, if there's a communication problem, or if any system isn't running, A must perform an
error recovery procedure. This arrangement makes A complicated and unnecessarily coupled to
systems C through N. Adding or changing a consumer application requires changing,
recompiling, retesting and redeploying A. Although it's sensible to have A depend on function B,
the ZIP code validation service, it makes no sense for A to depend on the otherwise-autonomous
appl ications C through N.

The traditional way of handling this situation is to have A write the new address data to a file or
database to be picked up later by the other systems. This avoids the complexity and runtime
dependencies of a dozen client/server interactions. C through N typically update their address
records in scheduled batch jobs. However, they could be set up to poll a file or database every
few minutes or hours to pick up new addresses. The address change is a business event, so
either arrangement (batched or polling) can be described as event processing (but not EDA). If
the business can tolerate delays in transferring the updates, these data-centric, non-SOA
patterns are satisfactory.

Publication Date: 13 February 2008/ID Number: G00155166 Page 3 of 7

© 2008 Gartner; Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0075

POL001 37239
POLOO137239

If the business requires up-to-the-minute data consistency, a better solution is to disseminate the
new addresses in messages. When event data is transmitted in a message, the combination is
called an "event notification." EDA is defined as an architectural style in which one or more
components of a system execute in response to receiving one or more notifications (see "Tutorial
for EDA and How It Relates to SOA"). In our example, A through N are considered to be
components of a system of systems. System A could send one message containing a new
address to an intermediary — for example, a message-oriented middleware (MOM) product —
that del ivers it to 12 consumers, systems C through N. The relationship between A and B is
client/server, and the relationships between A and C through N are EDA.

Like client/server, and unlike file and database solutions, EDA is built on program-to-program
communication. EDA event consumers are somewhat similar to client/server clients, and EDA
event sources are somewhat similar to client/server servers, but with some key differences:

• EDA notifications are pushed by the event source, not pulled by the event consumer.
The event source determines when the message is sent. An event consumer cannot
predict when it will receive a notification, so it must be implemented with an event-
capable, asynchronous communication mechanism. By contrast, client/server cl ients
typically use synchronous procedure calls.

• An event consumer doesn't pass parameters to an event source. The consumer does
not know what the event source is doing; it only knows that the source will emit a
notification when an event occurs. By contrast, cl ient/server clients send a document or
other parameter set to the service provider to convey instructions related to the current
instance of work (for example, client A passes each new customer address to server B).

• Event sources do not depend on event consumers. If all consumers stop running, the
source still runs. The events that it emits can be dropped, or MOM can save them in a
queue for delivery at a later time, if the business requires it. By contrast, a client/server
server will not run unless it has been invoked by a client.

EDA minimally couples the source and consumer, and makes it easy to modify them
independently. As long as the notification message stays the same and the change is compatible
with the business requirements, a developer can change or add event consumers without
changing the source component. Similarly, the event source can be changed without changing
the consumer(s), as long as the source emits the same notifications, and the logic of the business
process is not impaired. In some cases, the person developing an event source may assume that
a downstream event consumer will perform certain activities in a business process, but there's
nothing in the notification message or software interface that makes this explicit or "hard wired."

EDA has numerous variations:

• Each notification is typically available to multiple event consumers (a one-to-many
relationship). The source may emit ("publish") a notification, and a subscription manager
in a middleware intermediary may deliver a copy to all consumers who have registered
an interest in (have "subscribed to") that type of notification.

However, EDA can also be implemented with direct, one-to-one communication. EDA
doesn't need to use publish-and-subscribe, although it's valuable when there are
multiple sources and consumers or they change frequently.

• A sophisticated event consumer can analyze multiple incoming notifications using rules
to detect patterns that indicate situations of interest to the business. This type of

Publication Date: 13 February 2008/ID Number: 000155166 Page 4 of 7

© 2008 Gartner; Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0076

POL001 37239
POLOO137239

computing, cal led complex-event processing (CEP), is the basis for business activity
monitoring and similar applications. (The topic of CEP is beyond the scope of this
research.)

EDA and client/server can be implemented with or without a middleware intermediary. If the EDA
or client/server application is simple, plain protocols — such as HTTP or SOAP/HTTP (Web
services) — without middleware may be sufficient. However, if the relationship or communication
patterns are complex, it's generally better to use off-the-shelf middleware, rather than coding
equivalent features by hand in the application components. For example, MOM is a natural fit for
EDA, because most MOM products support publish/subscribe, point-to-point communication and
persistent queuing. However, the use of MOM does not define EDA. With enough effort, these
functions could be bui lt into the event source and consumer.

MOM can also be used to implement request/reply client/server relationships, which is a relatively
common practice (although most client/server uses alternative communication mechanisms,
rather than MOM). Other intermediaries, such as enterprise service buses, integration brokers
and business process management tools, may also be useful for client/server, EDA and mixed
applications that require address redirection, transformation, content-based routing or process
management.

Architects, analysts and software engineers make many decisions when designing SOA
applications. For example, they must decide whether to put a function, such as ZIP code
validation, in a separate component (B) or embed it in the main line (A). They must also decide
whether an application system (A) should be combined with one or more of the other application
systems (C through N).

In our example, component B (ZIP code val idation) is a sensible SOA service, because:

• It has a reasonable granularity, can be isolated from other parts of procedure A and an
interface can be clearly defined

• There may be a desire to host B on a different computer, perhaps owned and operated
by a business unit other than the one that hosts A

• Function B may be shared by multiple, disparate consumer applications

Similarly, the purpose of application A in our example is sufficiently distinct from that of C through
N, so that each should be deployed as its own system. For each relationship and interface in this
system of systems, developers had to select between client/server and EDA.

The client/server pattern is appropriate for relationships like that between A and B when:

• The server (B) performs a subset of a larger activity controlled by the client (A)

• The client depends on the server to perform a function and cannot finish its work without
the server's reply

• The server requires input instructions (in this case, address data) from the client to know
what to do

The EDA pattern is appropriate in relationships where the components (in this example, whole
application systems A and C through N) are largely autonomous:

Publication Date: 13 February 2008/ID Number: 000155166 Page 5 of 7

© 2008 Gartner; Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0077

POL001 37239
POLOO137239

• The event source reacts to external stimuli (in this case, end-user input regarding new
addresses), rather than instructions from downstream consumers

• The only commonality among the components is an interest in data about the same
event (the address change)

Although our example is simplistic, it represents real-world scenarios in critical ways.
Client/server and EDA are complementary, and they should be used to address different aspects
of work in a system or in a system of systems. In most projects, client/server relationships will
outnumber EDA relationships. Cl ient/server tends to apply to one application system, although it
is also used among separate systems for interactive, composite applications (using wrappers for
legacy systems where necessary). EDA relationships often apply to coarser-grained
relationships, such as those between separate application systems and separate companies,
although EDA is also used in applications for fine-grained, asynchronous, minimally coupled
processing.

"Tutorial for EDA and How It Relates to SOA"

"Advanced SOA for Advanced Enterprise Projects"

"Understanding and Applying the Design Differences Between WS* Based Architecture and
Web-Oriented Architecture"

"Applying WS-* Based Web Services and WOA Standards to Enterprise Application-to-
Application Interoperabi lity Challenges"

Acronym Key and Glossary Terms

CEP complex-event processing

EDA event-driven architecture

MOM message-oriented middleware

REST Representational State Transfer

SOA service-oriented architecture

Publication Date: 13 February 2008/ID Number: 000155166

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

Page 6 of 7

POL-BSFF-0000026 0078

POL001 37239
POLOO137239

Corporate Headquarters
56 Top Gallant Road__
Stamford, CT (GRO
U.S.A.

GRO ;..............................
European Headquarters
Tamesis
The Glanty
Egham
Surrey, TW20 9AW

UNITED KINGDOM

---- GRO

Asia/Pacific Headquarters
Gartner Australasia Pty. Ltd.
Level 9, 141 Walker Street
North Sydney
New South Wales 2060
AUSTRALIA-,-.-.-,-.-.,

GRO
rxpan 1 reaagaanei - s
Gartner Japan Ltd.
Aobadai Hills, 6F
7-7, Aobadai, 4-chome
Meguro-ku, Tokyo 153-0042
JAPAN

- GRO
Latin America Headquarters
Gartner do Brazil
Av. das Napoes Unidas, 12551
9° andar—World Trade Center
04578-903-Sao Paulo SP
BRAZIL

GRO

Publication Date: 13 February 2008/ID Number: G00155166 Page 7 of 7

02008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0079

POL001 37239
POLOO137239

Gartner Research
............................

Publication Date: 3 May 2007 ID Number: G00143292

Roy W. Schulte

This research describes the features and functions of an enterprise service bus (ESB)
and compares and contrasts them with other forms of middleware and basic
communication protocols. Architects and developers who are building service-oriented
architecture (SOA) applications should understand ESBs so that they know where to use
them and where they are unnecessary.

I 1i

• For most new SOA projects, the choice of communication infrastructure now comes
down to using simple Web service stacks, plain old XML (PDX) on HTTP or an ESB.

• ESBs improve the quality of program-to-program communication, make it easier to
share SOA services and make service versioning and changes to SOA interfaces easier
to implement.

• ESBs are often used to present portions of legacy and purchased non-SOA applications
as SOA services. However, ESBs are also relevant in large-scale or long-living SOA
service domains where there are no legacy non-SOA appl ications.

• Since their inception, ESBs helped enable the separation of communication and
integration logic from the application business logic. This approach is now being
expanded to include more policy-related issues regarding security, choice of protocols
and quality of service.

Recommendations

• Avoid hard-coding the identity (for example, the uniform resource indicator [URI]) of the
service providers into the consumers in any large, evolving SOA system.

• Use an ESB to offload communication and integration functions from the consumer and
provider elements in all large domains (more than 20 services) so that composite SOA
applications and business processes can be modified more quickly and easily.

• There is no need for an ESB in simple, small (fewer than 20 services) SOA appl ications,
particularly where all the interactions are request/reply, interfaces are slow to change,
there is no integration with packaged or legacy applications, and the whole application is
built by one disciplined development team.

© 2007 Gartner, Inc. andlor its Affiliates. All Rights Reserved. Reproduction and distribution of this publication in any form
without prior written permission is forbidden. The information contained herein has been obtained from sources believed to
be reliable. Gartner disclaims all warranties as to the accuracy, completeness or adequacy of such information. Although
Gartner's research may discuss legal issues related to the information technology business, Gartner does not provide legal
advice or services and its research should not be construed or used as such. Gartner shall have no liability for errors,
omissions or inadequacies in the information contained herein or for interpretations thereof. The opinions expressed herein
are subject to change without notice.

POL-BSFF-0000026 0080

POL001 37239
POL00137239

ANALYSIS

An ESB is a communication and mediation layer that connects service consumers and service
providers in SOA scenarios and situations that mix SOA and other architecture styles. However,
not all SOA scenarios require an ESB. Good SOA applications have been built since the 1990s
without ESBs, and many, especially prior to 2002, did not even use the Web or Web services.
SOA can be implemented with many different technologies — a choice with a long history (see
"Middleware for Service-Oriented Architectures").

A few SOA applications are stil l being implemented on object request brokers (ORBs),
transaction processing (TP) monitors and message-oriented middleware (MOM), but for most
developers, the choice now comes down to using simple Web services (SOAP on HTTP), PDX or
an ESB. The first two of these, SOAP and PDX, are widely avai lable and free, bundled into Web
servers, application servers, portal products and operating systems. ESB technology is available
not only in products called ESBs, but also embedded in other types of SOA infrastructure
products (see "The Enterprise Service Bus: Communication Backbone for SOA").

To understand where ESBs should be used, architects should consider four issues:

• Multiple communication patterns

• Intelligent addressing, routing and orchestration

• Mediation

• Complementing application platforms

s •.

ESBs are useful where the applications will use a mix of communication patterns:

• All ESBs support one-way messages and two-way request/reply exchanges.

• Almost all ESBs also support message queuing (store-and-forward) and publish-and-
subscribe (pub/sub).

If the applications will only use request/reply, then plain HTTP or a simple SOAP stack may be
sufficient (unless other ESB features are needed). However, HTTP does not supply reliable
messaging, queuing or pub/sub, although a limited form of pub/sub is available in protocols such
as RSS and Atom. SOAP stacks (outside of ESBs) are beginning to support WS-Reliable
Messaging (delivery confirmation for one-way messages), but SOAP standards do not cover
queuing, and SOAP-based pub/sub specifications (such as WS-EventNotification) are still being
debated. MOM can support all the communication patterns offered by ESBs (indeed, virtual ly all
ESBs embed MOM), but plain MOM lacks other features helpful for SOA and is less aligned with
industry standards.

An ESB may also move fi les, database records and other types of data used in non-SOA
communication. Many ESBs are adding explicit support for Representational State Transfer
(REST) and conversational communication. Microsoft's Windows Communication Foundation
(WCF) and the Service Component Architecture (SCA), a new design approach promoted by the
Open SOA Collaboration (www.asoa.org), include REST and conversations in their
specifications. Many ESB vendors have pledged to support SCA (see "Service Component
Architecture Is a Winner in the Quest to Establish a Common Notation for SOA").

Publication Date: 3 May 2007/ID Number: G00143292 Page 2 of 7

© 2007 Gartner; Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0081

POL001 37239
POLOO137239

ESBs offload some addressing, routing and orchestration tasks from the application, enabling the
consumer and provider elements to be simpler. Communication paths are "soft wired" into the
ESB, where they can be changed at deployment or runtime, rather than being "hard wired" into
the application code at development time. There are three aspects to this:

Service virtualization — ESBs bind each service consumer with a suitable service
provider at runtime. ESBs use a name space or registry, whether embedded or external ,
to resolve the service reference to a specific implementation (element). The registry may
be based on UDDI , or it may be entirely proprietary. Al l ESBs make it simple to
substitute an alternate provider at deployment time, and most also enable runtime
substitution. The developer of the consumer does not have to know the URI of the
provider, because the ESB redirects the request, for example, by using a service
identifier as an alias.

• Rule-based routing — Most ESBs support content-based routing. Routing rules may
be written in JavaScript, XPath or a third-generation language, or they may be specified
with a graphical development tool (which may generate XPath or another language).
Many ESBs also use topic names, message properties or queue names to direct
asynchronous, one-way messages (often leveraging MOM features built into the ESB).

Orchestration — Most ESB products have a facility that orchestrates the flow of a
composite SOA application or a multistep business process. The sequence of the
services to be executed and conditional routing rules are usually specified through a
graphical tool. The flow can be reconfigured with few or no changes in the consumers.
Some early ESBs did not have orchestration (it is not definitional to an ESB), but most
commercial ESBs now do, as a standard feature or an extra-cost option. Orchestration
may be implemented in an ESB hub (for example, in a BPEL server), in distributed
adapters (for example, as itinerary-based routing) or both.

HTTP, plain SOAP, TP monitors, ORBs and MOM do not have intelligent routing or orchestration
capabilities. Aside from ESBs, only integration tools, such as programmatic integration servers,
integration brokers and simi lar products, have this. Any large, continuously evolving SOA system
should avoid hard-wiring the identity (for example, URI) of the service providers in the consumers.
A number of companies have coded their own simple mechanism for virtualizing service
identifiers so that they do not use an ESB for this purpose, but few companies build their own
rule-based routing or orchestration tools.

11=•11tT6;
ESBs move messages between SOA elements so ESBs are in an ideal position to modify the
messages or otherwise add value as the messages pass through. By definition, an ESB must
have a mechanism that enables mediation to be performed, although an ESB is not required to
supply any particular mediation functions. Examples of common mediation functions include:

• Message val idation

• Transformation

• Protocol bridging (for example where one element uses SOAP v 1.1 and another uses
SOAP v.1.2 or a MOM)

• Message logging and auditing

Publication Date: 3 May 2007/ID Number: G00143292

© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

Page 3 of 7

Gartner

POL-BSFF-0000026 0082

POL001 37239
POLOO137239

Security, including authentication and authorization

Service virtualization, rule-based routing and orchestration

Many of these functions require reading the message contents, which is why ESBs must support
typed messages (the message attributes are explicitly documented). Most ESBs have
development-time tools that read WSDL files and XML Schema Definitions and then generate
metadata used by the ESB at runtime. Many ESBs can also import metadata from database
catalogs and other sources. A full repository is not part of an ESB and is not necessary for the
ESB at runtime, but companies engaged in large-scale SOA programs should have one (see
"When to Use Metadata Repositories, Registries or Both").

Transformation is particularly important because it makes it easier to change services and
interfaces. A new version of a service with additional functions can be installed and used by new
consumers without disrupting consumers of the previous interface, because the ESB can
transform the new messages into the older formats that have the message attributes used by
earl ier consumers.

Basic protocols, such as HTTP and SOAP, and traditional middleware, including ORBs, TP
monitors and MOM, have no mediation capabilities — they pass messages through unchanged.
A developer can write a custom wrapper or manually insert a proxy server in the middle of a
message flow to intercept and mediate a message, but it would not be a native part of the
communication infrastructure as it is with an ESB, integration suite and certain other integration
tools.

Many ESBs support certain functions that are also performed by high-end appl ication servers and
TP monitors, particularly:

. Load balancing

. Failover

Transaction management

The ESB implements load balancing and failover by rerouting messages to an alternative server.
This could potentially involve dissimi lar application servers, although, in practice, load balancing
and failover almost always use the same server technology, because the alternative service
provider element must be interchangeable with the original . Transaction management includes
synchronizing with other resource managers, such as database management systems (DBMSs).

Projects that have made a prior decision to use a high-end (for example, JEE) application server
can get these functions from their application server or optionally from an ESB. However, an ESB
may affect the choice of platform because it also supplies these functions to a simple Java
Standard Edition platform or a plain operating system process, potentially making the high-end
application server unnecessary in situations where the only motivation for the high-end platform
was scalability or reliabi lity.

Some types of SOA infrastructure products include ESBs and application servers. Even some
commercial products originally called "ESBs" now have their own limited or full-blown application
server, going beyond the original understanding of an ESB to become a larger form of SOA
infrastructure. In this type of product, the embedded application server can be the container (host
environment) for the service provider elements, while the ESB aspects are used to connect into
external application servers that host other services(see "Enterprise Service Bus Usage
Scenarios and Product Categories").

Publication Date: 3 May 2007/ID Number: G00143292 Page 4 of 7

© 2007 Gartner; Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0083

POL001 37239
POL00137239

The role of an ESB is roughly analogous to the role of a DBMS, although ESBs do program-to-
program communication, whereas DBMSs support prog ram-to-database interactions. DBMSs
offload data management tasks from the appl ication by performing data navigation (such as
joins), transactional integrity, concurrency control, backup, recovery, load balancing, caching and
other functions, thereby improving the overall quality of data management. DBMSs also make it
practical to share data among multiple applications. Occasional changes in data models are
easier to implement. Similarly, ESBs improve the quality of program-to-program communication,
make it easier to share SOA services among multiple consumer applications and make
occasional changes to SOA interfaces easier to implement. To the extent that these capabilities
were previously coded into the application, an ESB (such as a DBMS) simplifies application
development. However, most applications simply existed without these features in the past, so
the ESB's value in flexibility and quality is more notable than the savings in application code.

Since their inception, ESBs have encouraged the separation of communication and integration
logic from business logic. This principle is now being applied more extensively as ESBs begin to
implement the new SCA and WCF models for SOA architecture. The goal is to abstract pol icy-
related issues by expressing them declaratively at development time and postponing the
implementation of the choices to deployment or runtime. This applies specifically to policies
regarding security, choice of protocols and quality of service. This evolution (and SCA and WCF
in general) involves not only the ESB, but SOA application design practices and SOA
development tools.

Large (more than 20 services), demanding or frequently modified SOA applications benefit most
from ESBs. The factors that tend to promote the use of an ESB include:

• Business requirements that cal l for a mix of protocols and communication patterns,
including request/reply, one-way messages, message queuing and pub/sub

• Applications composed of elements that run on a mix of heterogeneous application
servers and operating systems, requiring compatibility across platforms or protocol
conversion

• Processes that change fairly frequently, or those with complex routing rules where
business analysts want to change the flow without changing the consumers or service
providers

• SOA scenarios where consumer or service provider elements are added, modified or
moved fairly often

• Applications with more than 20 SOA services, because they are likely to change often

• Integration scenarios involving packaged and legacy applications

ESBs are often used to present portions of legacy and purchased non-SOA applications as SOA
services. Developers do not have to write a custom wrapper or design a proxy server because
those functions are implemented within the ESB, its adapters or servers that are plugged into the
ESB. However ESBs are not just applicable to these classical integration scenarios. Any large-
scale or long-living set of SOA services is an appropriate target for an ESB because of the
"organic" nature of SOA. New business processes, consumers and providers are frequently
added, and older ones are periodically modified or retired. The ability of an ESB to simplify

Publication Date: 3 May 2007/ID Number: G00143292 Page 5 of 7

© 2007 Gartner; Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0084

POL001 37239
POL00137239

ongoing changes in interfaces and processes is relevant, even where there are no legacy non-
SOA applications.

Versioning is a major challenge in the operation of an SOA service domain, so the ability of an
ESB to transform messages can be a key benefit. In the future, there will be fewer legacy non-
SOA applications, but more legacy SOA services, so there will be less need for technical
gateways, but an ongoing need for the other mediations that ESBs offer.

An ESB is overkill for small, simple, static SOA applications, particularly where:

• All the communication is request/reply or "best efforts" one-way messages (delivery
need not be ensured).

• Navigation and routing logic is simple and can be embedded in the consumers.

• There are relatively few services (fewer than 20).

• Consumers and services do not change often.

• All the applications are designed by one team or closely cooperating teams that
exchange metadata and agree on consistent interface definitions.

SOA proof-of-concept projects and other SOA applications with a limited scope and life span
generally do not need an ESB.

"Middleware for Service-Oriented Architectures"

"Service Component Architecture Is a Winner in the Quest to Establish a Common Notation for
SOA"

"When to Use Metadata Repositories, Registries or Both"

"The Enterprise Service Bus: Communication Backbone for SOA"

"Enterprise Service Bus Usage Scenarios and Product Categories"

Acronym Key and Glossary Terms

BPEL Business Process Execution Language

DBMS database management system

ESB enterprise service bus

HTTP Hypertext Transfer Protocol

MOM message-oriented middleware

ORB object request broker

PDX plain old XML

REST Representational State Transfer

RSS Really Simple Syndication

SCA Service Component Architecture

Publication Date: 3 May 2007/ID Number: G00143292

© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

Page 6 of 7

POL-BSFF-0000026 0085

POL001 37239
POLOO137239

SOA service-oriented architecture

SOAP Simple Object Access Protocol

TP transaction processing

UDDI Universal Description, Discovery and Integration

URI Uniform Resource Identifier

WCF Windows Communication Foundation

WSDL Web Services Description Language

XML Extensible Markup Language

REGIONAL HEADQUARTERS

Corporate Headquarters
56 Top Gallant Road
Stamford, CT GRO
U.S.A.

GRO

European Headquarters
Tamesis
The Glanty
Egham
Surrey, TW20 9AW
UNITED KINGDOM

_ GRO_._._._._.;

Asia/Pacific Headquarters
Gartner Australasia Pty. Ltd.
Level 9, 141 Walker Street
North Sydney
New South Wales 2060
AUSTRALIA._._._._.,

GRO
Japan Headquarters
Gartner Japan Ltd.
Aobadai Hills, 6F
7-7, Aobadai, 4-chome
Meguro-ku, Tokyo 153-0042
JAPAN

Latin America Headquarters
Gartner do Brazil
Av. das Nag6es Unidas, 12551
9_

0
 andar_—_ W_ orld Trade Center
GRO I-Sao Paulo SP

---- -._.;

._._._._._.G RO-._._._._.

Publication Date: 3 May 2007/ID Number: G00143292

© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

Page 7 of 7

POL-BSFF-0000026 0086

POL001 37239
POLOO137239

Gartner Research
............................

Publication Date: 17 July 2008 ID Number: G00149891

:- •TIliiwi ' • •

Yefim V. Natis

Intermediation in the design of business applications means that software elements
(clients, service implementations and event handlers) interact indirectly, through
intermediaries. The resulting improvement in manageability and extensibility can make
business applications more durable, scalable and agile. However, achieving this means
learning new skills in architecture and programming, and sometimes using new tools —
a potentially costly first step.

• Business systems designed with intermediation are more agile, thus will last longer and
enable greater extensibility, scalability and innovation.

• Software scenarios that require tight coupling between software elements for atomistic
or other reasons generally shouldn't use intermediation.

• Most interactions, especially under the service-oriented architecture (SOA) model, can
be intermediated, and the IT environment likely will benefit.

• Most IT organizations have the technical means for intermediated communications
(queuing and publ ish-and-subscribe [pub-sub], distributed caching, enterprise service
bus [ESB] and other middleware). Therefore, intermediation is available to most projects
at the early planning stages or at the programming stage.

Recommendations

• Software designers should use intermediation for most business systems.

• IT managers should ensure proper training in intermediated communications for IT
architects, project leaders and engineering staff.

• Technology evaluators should include intermediation support in selection criteria for
platforms, tools, packaged applications and software-as-a-service (SaaS) contracts.

• IT planners and architects should invest in understanding the advantages and limitations
of intermediation to avoid underpowering their systems or overstretching middleware by
making wrong choices.

• It organizations with little or no experience in intermediation should plan the
experimental use of intermediation in a less-critical, real-world project, such as a pilot
program.

© 2008 Gartner, Inc. andlor its Affiliates. All Rights Reserved. Reproduction and distribution of this publication in any form
without prior written permission is forbidden. The information contained herein has been obtained from sources believed to
be reliable. Gartner disclaims all warranties as to the accuracy, completeness or adequacy of such information. Although
Gartner's research may discuss legal issues related to the information technology business, Gartner does not provide legal
advice or services and its research should not be construed or used as such. Gartner shall have no liability for errors,
omissions or inadequacies in the information contained herein or for interpretations thereof. The opinions expressed herein
are subject to change without notice.

POL-BSFF-0000026 0087

POL001 37239
POL00137239

STRATEGIC PLANNING ASSUMPTION(S)

Through 2013, intermediation as a core design principle will result in applications of the best
scalability, extensibility and longevity in the software industry.

ANALYSIS

A fundamental effect of SOA is the partitioning of business application software into smal ler
building blocks: services, event handlers or similar software elements. In most cases, interactions
among services and between clients and services are in the form of direct request/reply.
However, industry experience shows that intermediated (indirect) communication among software
elements can deliver substantially more benefits than the traditional direct communication. Only
advanced software architecture teams can deploy intermediate communication as the core
architecture of their applications. As the demand for the high-end characteristics of SOA
applications reaches the mainstream, intermediated communication likely wi ll become a
mainstream best practice of advanced SOA.

The difference between direct and indirect communication is:

• Direct communication is communication where the requestor (A) makes a direct call to
the service (B) by its name or alias.

• Indirect (intermediated) communication is when the originator (A) does not name or
attempt to contact the target (B) but communicates with an intermediate third party (X)
— a queue, a middleware product, a caching mechanism, a database or another
software intermediary. It becomes the job of the intermediary to identify and contact the
target (B), or (in simpler scenarios) the target may be actively polling the intermediary for
work requests.

All software is multilayered, and modularity and interconnectivity exist (largely independently) at
each level. This research is exclusively about the design of business applications. The
communicating software elements in this example are SOA services and clients, event-driven
architecture (EDA) event handlers and the like. Thus, the intermediaries are directly visible and
addressable by the business software (a queue, a middleware product's application programming
interface [API], such as an ESB, a caching mechanism, a database or another software
intermediary). It is possible that what is, for example, direct communication at the application level
is implemented at the level below through the intermediated model (messaging or similar), but
this fact is unknown at the appl ication level and, therefore, is of no concern. Mixing the levels
when considering these matters will create confusion (see Note 1).

The choice to use intermediation in a software system can be made at the early stage of
application design and planning or at the later time of programming.

• Early decision, in this respect, ensures greater consistency at programming time and
greater cohesiveness among the different stages of application planning and the
development processes.

• Late decision has limited scope and can result in the same project ending up with
multiple models and technologies of intermediation chosen by different technical
contributors.

Regardless of the stage that intermediation is considered, a specific intermediary must be
established for al l software or design elements. This choice is best-informed if multiple scenarios

Publication Date: 17 July 2008/ID Number: G00149891 Page 2 of 8

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0088

POL001 37239
POLOO137239

are considered. When a programmer chooses an intermediary, the program typically is aware
only of the requirements of his or her part of the larger project. For all these reasons, we
recommend that the decision to use intermediation and its specific rendition be made by software
architects based on the specifics of the business design of the application. Thus, application
software architects should be the key intermediation experts in the IT organization.

Simple intermediation begins with putting a simple intermediary (a queue or another) between the
two communicating software elements. However, advanced scenarios include clustering,
consolidation, extension and the all-inclusive brokered intermediation, and can engage a large
number of participating software elements (see Figure 1).

Figure 1. Use Scenarios for Application-Level Intermediation

AI PIE Simple
i` Intermediation

Parallel
Clustering

Consolidation
~i j;

it

... ___
t!T rn !

Source: Gartner (July 2008)

Publication Date: 17 July 2008/ID Number: G00149891

02008 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

Page 3of8

Gartner

POL-BSFF-0000026 0089

POL001 37239
POLOO137239

Advanced scenarios require an "intelligent" intermediary (a middleware product, such as an ESB
or another form of integration broker) to manage the passing messages and to apply processing
rules. Some more-advanced intermediaries also may be context-aware. This variety of add-on
intelligence, and the potential power of intermediation, is a direct result of decoupl ing the software
elements in intermediated communications. These are the typical use scenarios for intermediate
communication:

• Simple intermediation: A gives the input data to the intermediary, and B gets it from the
intermediary. The same result can be accomplished by a one-way request-reply with a
greater degree of coupling between A and B.

• Parallel clustering: Multiple instances of B are begun to take work from the intermediary
and process it in several parallel streams to maintain the service-level agreement's
(SLA's) response time by increasing the system's throughput.

• Consolidation: B processes requests from multiple related sources, consolidating
processing and improving resource use for relatively infrequent requests.

• Extension: A new service (C) is added to process the request, enabling an unintrusive
extension of the application's functionality. Monitoring functionality, including business
activity monitoring (BAM), is a great beneficiary of this scenario. This requires an
intelligent intermediary; simple intermediary storage wi ll not do, because the multiple
targets and passing messages must be managed.

• Brokered intermediation: Multiple scenarios are combined in one intermediation
environment. Multiple requests and services are interconnected and managed via an
intermediation broker. Business rules can be added to the broker to add value to the
incoming requests before forwarding them to the appropriate targets. Advanced brokers
may also be context-aware. This, too, requires an intel ligent intermediary, because
management and brokering require the processing of rules and other logic.

The indirect decoupled nature of intermediated communication is the cause of its distinct benefits:

• The intermediary keeps track of messages that are passing through, enabling tracking,
interception, management and post-transaction analysis.

• The originator is not blocked while the service executes, nor is it dependent on whether
the service is available to execute at the time when the request is issued.

• The intermediary, by its nature, enables centralized control , including dynamic
optimization of traffic by manipulating priorities and resource allocations for different
channels, depending on configuration and context.

• Load balancing, clustering and fault tolerance are natural attributes of intermediated
communication when an "intelligent" intermediary is present.

• Extensibi lity by simply adding new services (listeners) to the process in a new way;
some recognized requests can be unintrusive for applications and transactions.

• Extensibi lity by adding more points of origination of already recognized requests can be
entirely unintrusive for applications and transactions.

• Version control and multiversion coexistence can be accomplished by configuring the
intermediary.

Publication Date: 17 July 2008/ID Number: G00149891

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

Page 4 of 8

Gartner

POL-BSFF-0000026 0090

POL001 37239
POLOO137239

• Complexity is reduced from many-to-many connections and transformations to a pair of
many-to-one and one-to-many. Opportunities arise to establ ish canonical formats to
further reduce redundancy and complexity.

• Automatic fault resil ience can be achieved by redirecting affected traffic in real time.

• Automatic support of heterogeneity can be added via intermediary switching protocols,
access models and data types.

• Additional processing in the intermediary (security, business intelligence, monitoring,
pattern matching and context injection) can add value.

• Redundant services supported by multiple providers (such as e-mail or fax) can be
consolidated.

• An intermediary can establish configurable policies to select from among similar
services offered from different providers, depending on the required SLA, price or other
criteria — in real time.

• There is an opportunity for parallel processing, including support for multiprocessor
computing grids. (This capability can be a foundation for massive improvements in
performance and is built into the leading online transaction processing and extreme
transaction processing engines and into EDA platforms [EDAPs]).

r

The indirect nature of intermediation also causes its limitations:

• Intermediation prevents tightly coupled transactional behavior. As a result, the traditional
atomistic distributed transactions that occur via two-phase commit protocols are not
possible. Error recovery in some distributed transactions may require compensating
transactions — a weaker form of integrity protection.

• Request-reply interactions must be replaced with a "round trip" of decoupled
intermediated interactions that are paired and coordinated by an intel ligent intermediary.

• For users who are familiar only with the direct request/reply interaction model, additional
programming using a less fami liar programming model is required to interact with the
intermediary.

• Insufficient standards typically lock in the appl ication to the initially chosen intermediary.

• Maintenance (pruning) of a simple intermediary is required to prevent accumulation of
"dead" requests.

• The intell igent intermediary is a separate middleware product and can be expensive to
acquire, maintain and use, requiring staff training.

• Problems with the intermediary (for example, poor performance and technical failures)
can affect the entire environment and a large number of services and applications.

• A shortage of productivity tools dedicated to the intermediated model of communication
requires additional training.

Publication Date: 17 July 2008/ID Number: G00149891

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

Page 5 of 8

Gartner

POL-BSFF-0000026 0091

POL001 37239
POLOO137239

The simplest form of intermediation is by program A writing a message to a named queue, whi le
program B arranges to be notified when a new record is written to the queue or periodically
retrieves the messages (if any) from the queue. This is simple intermediation, and any added
logic would have to be in the software that posts and retrieves the message from the queue.
Some queues are deployed in real memory to improve performance. Some queues offer
automatic destructive read (the message is read only once and then is removed from the queue).
Some queues can participate in standard, two-phase commit transactions to ensure message
delivery and its integrity.

• i ' . •'1 i1i'

Pub-sub is an advanced form of intermediation. Program A posts a message of a stated type
("topic") to the pub-sub broker (intelligent intermediary). Any number of programs (B, C and so
on) can indicate to the intermediary that they require notification when a new message of the
named topic is posted (subscription). Thus, not only can the originally intended services be
exposed to the topic, but services can be added, without intrusion on the running software.
Moreover, new originators can be added and old ones removed while subscriber(s) continue to
operate unchanged. BAM is most powerful in an environment where business interactions are
driven by pub-sub architecture by adding listening services to all relevant topics. Many
innovations and extensions are possible in the pub-sub environment.

Queues and pub-sub brokers are the most popular but not the only means of intermediation.
Shared memory, especially advanced distributed caching platforms, can be used for this purpose,
as can databases and file systems. Choosing the most appropriate means of intermediation
depends on the costs (in budget, effort and skills), the desired levels of simplicity and the required
levels of integrity and performance.

J]I.iIm(I.irr1tIrT•

Basic SOA typically is seen as the directly interactive architecture (and is reflected as such in the
architecture of Web Services Description Language [WSDL], Web services, Java API for XML
Web services and other core SOA specifications). Most SOA applications are implemented
without intermediation: A invokes B by a direct-interface call. Advanced SOA includes other
interaction models, notably the event-driven SOA style (EDA), which, in turn, typically is
intermediated.

~9Jj i.IM 'iilig0 FTLIT1

EDA is concerned with the processing of events. Generally, event objects can be passed to
software elements using any method of communication. However, the nature of event origination
favors the decoupled architecture of asynchronous and intermediated communication. The vast
majority of EDA is implemented using intermediation (via queuing or pub-sub intermediaries).

Intermediation often is deployed in event processing, but it is not equivalent to it. In many
examples of intermediation, the messages that pass through the intermediary are not event
objects, and some event objects are communicated directly. Thus, not all event processing is
intermediated, and not all intermediated communication conveys events. You don't have to
master event processing to use intermediation.

Publication Date: 17 July 2008/ID Number: G00149891 Page 6 of 8

© 2008 Gartner; Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0092

POL001 37239
POL00137239

As mentioned, many middleware and platform product categories supply enabling technologies
for intermediated communication. These include:

• Specialist queuing and pub-sub products include Apache ActiveMQ (open source),
FioranoMQ, IBM WebSphere MQ, Microsoft Message Queuing and Tibco Rendezvous.

• Java Platform, Enterprise Edition (Java EE) implementations include Java Messaging
Service, which has queuing and pub-sub capabilities. These include the IBM
WebSphere Application Server, Oracle WebLogic Server, Red Hat JBoss Enterprise
Application Platform, SAP NetWeaver and Sun Microsystems GlassFish Enterprise
Server.

• Distributed caching platforms include Alachisoft's NCache, GemStone Systems'
GemFire, GigaSpaces Technologies' XAP Enterprise Data Grid, IBM's WebSphere
eXtreme Scale, Oracle Coherence, Red Hat JBoss' JCache and Terracotta's Terracotta
Server. Several other notable offerings are under development and cannot yet be listed.

Most users have access to some (often multiple) of these technologies and are technically
equipped for intermediated communication. We recommend that, after examining the advantages
and challenges of this approach, users include intermediation on their shortlists of best practices
for modern software design.

"How to Get Started With Event Processing"

"Tutorial for EDA and How It Relates to SOA"

"Key Issues for SOA, EDA and WOA, 2008"

"SOA Applications Should Mix Client/Server, EDA and Conversational Patterns"

Note 1
Implicit vs. Explicit Intermediation

This research covers only the explicit form of intermediation. This is when the intermediary is
visible to the application software elements (services, clients, event sources, handlers and
others). In explicit intermediation, the source communicates with the intermediary without
knowing the ultimate destination of its data (message). Thus, the intermediary is a software
element that acts as a value-added pass-through or a broker but never as the final destination. 11
fully decouples the source and the destination, because both are aware only of the intermediary.
The intermediary is shared by many application elements (source or target); it does not have a
purpose, other than to facilitate and enrich communication.

In implicit intermediation, the application element addresses another appl ication element directly,
but the underlying middleware that delivers the message at runtime uses an internal intermediary
to facilitate the communication. At the application design level, this is a direct communication:
Only the source and the target are visible (A calls B). At runtime, middleware implements the
communication via a lower-level intermediary (Oracle Tuxedo is implemented this way, and most
message-oriented middleware and ESB products support direct interaction at the application level
using implicit intermediation "under the covers").

Publication Date: 17 July 2008/ID Number: G00149891 Page 7 of 8

© 2008 Gartner. Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0093

POL001 37239
POLOO137239

The same intermediary can be used in both patterns. An ESB can be addressed as an
intermediary via its APIs to post an event or to put an item on a queue. An ESB also can be used
as a covert underlying implementation to what was designed at the application level as direct
communication. A queuing system also can be addressed directly by the application logic (as an
explicit intermediary), or the same queuing system can be used internally by runtime middleware
to facilitate what was designed to be a direct communication at the application level.

Implicit intermediation del ivers some of the same benefits as explicit intermediation (greater
scalability, fault tolerance and manageability), without some of the costs (learning a new
programming model). Implicit intermediation is a progressive step, as compared with fully coupled
direct connections. However, explicit intermediation is the most powerful form of this architecture,
offering not only performance improvements but also added flexibility and extensibility in design
and a long-term evolution of the applications.

Corporate Headquarters
56 Top Gallant Road
Stamford, CT 0 GRO
U.S.A. _._._._._._. .

._._._._. GRO-._._._._.
European Headquarters
Tamesis
The Glanty
Egham
Surrey, TW20 9AW
,UN1TEQ_~1N.~DQM.

GRO

Asia/Pacific Headquarters
Gartner Australasia Pty. Ltd.
Level 9, 141 Walker Street
North Sydney
New South Wales 2060
AUSTRALIA

•_.p GRO
._,.,.,la

Japan Headquarters
Gartner Japan Ltd.
Aobadai Hills, 6F
7-7, Aobadai, 4-chome
Meguro-ku, Tokyo 153-0042
JAPAN

GRO
Latin America Headquarters
Gartner do Brazil
Av. des Nacoes Unidas, 12551
9_°_a_ndar—World Trade Center

GRO E-Sao Paulo SP
BRAZIL

L._._._._.GRO_._._._._._

Publication Date: 17 July 2008/ID Number: G00149891

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

Page 8 of 8

Gartner

POL-BSFF-0000026 0094

POL001 37239
POLOO137239

Publication Date: 25 March 2008

!s- 11 ::

Jess Thompson

ID Number: G00155743

The use of open-source enterprise service bus technology is widespread, and Gartner
expects this to grow. However, its use must be supplemented with other technologies to
provide the manageability, reliability and security demanded by production
environments.

© 2008 Gartner, Inc. andlor its Affiliates. All Rights Reserved. Reproduction and distribution of this publication in any form
without prior written permission is forbidden. The information contained herein has been obtained from sources believed to
be reliable. Gartner disclaims all warranties as to the accuracy, completeness or adequacy of such information. Although
Gartner's research may discuss legal issues related to the information technology business, Gartner does not provide legal
advice or services and its research should not be construed or used as such. Gartner shall have no liability for errors,
omissions or inadequacies in the information contained herein or for interpretations thereof. The opinions expressed herein
are subject to change without notice.

POL-BSFF-0000026 0095

POL001 37239
POL00137239

ANALYSIS

i

Open-source software (OSS) enterprise service bus (ESB) technology is available from multiple
open-source communities, including Apache, ChainForge ESB, MuleSource and WSO2. In
addition, Sun Microsystems' Java Business Integration (JBI) reference implementation (Open
ESB) is available as an open-source offering.

The creation of most OSS products is driven by a combination of community notion, the existence
of standards and the avai lability of OSS technology components. This potent combination led to
the creation of multiple OSS infrastructure technologies, such as portals and Java Platform,
Enterprise Edition (Java EE) application servers. In the same way, OSS ESBs are being driven
by a collection of standards — two of the most notable being the Java Messaging Service (JMS)
and JBI (aka JSR 208).

Standards most-frequently used to create OSS ESBs include

• Connectivity: Support for JMS, Java Database Connectivity (JDBC), TCP, multicast,
HTTP, SMTP and Post Office Protocol Version 3 (POP3).

• JMS: An application programming interface (API) for implementing reliable enterprise
messaging. The core of an ESB is a Web-services-capable communication subsystem
that can support optional mediation functions, particularly for (but not limited to) service-
oriented architecture (SOA) applications (see "Open Source in MOM, 2008").

• JBI: A runtime architecture that enables plug-ins to interoperate via a mediated
message exchange model. This enables the seamless addition of JBI-compliant
services that perform validation, routing and transformation, as described above.

• BPEL: Several OSS ESB technology downloads extend the core ESB feature set. A
feature frequently offered in conjunction with the ESB is a process orchestration engine
that supports aspects of business process management (BPM).

Note that none of these standards are definitional, and that their use varies among open-source
communities.

OSS ESB technology also is available from vendors that offer it in conjunction with maintenance
and services for that technology. Examples of such vendors include Iona (Fuse became available
in July 2007), Red Hat (JBoss ESB became available in February 2008) and Sun (Open ESB
became avai lable in June 2005). Note that these vendors, although offering OSS ESB technology
as stand-alone products, use it as a leader to broader, more-complex suites.

Combined, there have been approximately 1.5 million downloads of OSS ESB offerings, but it's
impossible to identify how many of those downloads are in production. The primary reason for
this is because there are no license fees for OSS technology. However, license fees are only one
component of the total cost of ownership (TCO). The staff required for support and maintenance
when OSS ESBs are used in a production environment adds significantly to the TCO. Figure 1
compares TCO with other salient characteristics for OSS, supported and commercial ESBs, using
characteristics explained in Table 1. Note that it's unlikely the criteria used wi ll be equal ly
important to all organizations.

Publication Date: 25 March 2008/ID Number: 000155743 Page 2 of 6

© 2008 Gartner; Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0096

POLOO137239
POLOO137239

Figure 1. Comparison of OSS ESB Technology Sources for Production Environments

Openness

Extensi

Productivity

Luvv 11-v
Excellence

Source: Gartner (March 2008)

Publication Date: 25 March 2008110 Number: 000155743

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

ty

Breadth of
Features

— Private

......OSS
Supported OSS

Page 3 of 6

Gartner

POL-BSFF-0000026 0097

POL001 37239
POL00137239

Table 1. ESB Characteristics

Openness Integration, interoperability, portability, "pluggability,"
access and standards compliance (JBI, JMS and
ActiveMQ)

Safety Viability, commitment to market, continuity,
manageability, cost of exit and customer experience

Breadth of Features Breadth, completeness of function, and service from
vendors and partners

Engineering Excellence Internal architecture, code quality and delivery record

TOO Total costs to include license, maintenance, support and
staff skills

Productivity Ease of use, training, learning curve and time to results

Extensibility An architecture that enables users to plug in optional,
intermediary functions to process messages in transit

Source: Gartner (March 2008)

Users are attracted to the use of an OSS ESB because it reduces capital expenditures
(eliminating license costs) and vendor dependence. However, OSS technology is a double-edged
sword. On the one hand, it offers significantly reduced costs for technology acquisition,
documentation and updates. On the other hand, when deploying OSS technology, an end-user
organization can end up devoting significant (and, in many cases, unplanned) head count to
maintain IT infrastructure that uses OSS ESB technology. This can result in a backward situation
in most organizations whose strategy is to minimize overall IT costs.

Future and Transition

By 2012, OSS technology used for SOA deployment will evolve to the point where the ESB is
only one of many SOA backplane components (see "Predicts 2007: SOA Advances" and "Toolkit:
Planning for Service-Oriented Architecture With the Gartner SOA Adoption Model") available from
open-source communities. Examples of additional, available OSS components include registry, a
BPEL process orchestration engine and SOA governance.

Gartner metrics project that, during 2007, 22% of IT budgets were spent on SOA. With the
appropriate support and services, OSS ESB technology offers the potential to reduce the portion
of SOA budgets allocated to acquiring and deploying infrastructure.

• Consider using OSS ESB technology as part of an incremental approach to building an
SOA backplane.

• Identify the staff required to administer and maintain OSS ESB technology in a
production environment. Note that OSS ESB maintenance wil l include the staff required
to debug problem reports that are traced back to the ESB. Consider supplementing your
staff with services and maintenance offered by vendors.

• Recognize that as your SOA maturity grows, your needs evolve from features provided
by basic ESBs to those of a more-comprehensive SOA backplane.

Publication Date: 25 March 2008/ID Number: G00155743 Page 4 of 6

O 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026 0098

POL001 37239
POL00137239

• OSS ESB technology can be used in conjunction with other OSS offerings to provide the
features of an SOA backplane. Identify the interoperability of OSS offerings. (JBI
compliance is one approach to interoperability.)

• Recognize that an ESB isn't just about SOA. It also provides basic application
integration features.

• Application infrastructure vendors should be wary of OSS technology. Adoption is
growing. Vendors must offer ESB products with support and maintenance that provide a
cost-effective alternative to an OSS ESB.

"Predicts 2007: SOA Advances"

"Toolkit: Planning for Service-Oriented Architecture With the Gartner SOA Adoption Model"

"User Survey Analysis: SOA, Web Services and Web 2.0 User Adoption Trends and
Recommendations for Software Vendors, North America and Europe, 2005-2006"

"Red Hat Seeks New Market With Open-Source SOA Platform°"

"Open Source in MOM, 2008"

This research is part of a set of related research pieces. See "The State of Open Source, 2008"
for an overview.

Publication Date: 25 March 2008/ID Number: G00155743

O 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

Page 5 of 6

POL-BSFF-0000026 0099

POL001 37239
POLOO137239

REGIONAL HEADQUARTERS

Corporate Headquarters
56 Top Gallant Road
Stamford, CT 06902-7700
U._S_.A_ _.

*` GRO
European Headquarters
Tamesis
The Glanty
Egham
Surrey, TW20 9AW
UNITED KINGDOM

GRO
Asia/Pacific Headquarters
Gartner Australasia Pty. Ltd.
Level 9, 141 Walker Street
North Sydney
New South Wales 2060
AUSTRALIA

GRO
Japan Headquarters
Gartner Japan Ltd.
Aobadai Hills, 6F
7-7, Aobadai, 4-chome
Meguro-ku, Tokyo 153-0042
JAPAN,_._._,_._._,_._._,_.

a GRO

Latin America Headquarters
Gartner do Brazil
Av. das Napoes Unidas, 12551
9° andar—World Trade Center
04578-903 -Sao Paulo SP

GRO

Publication Date: 25 March 2008/ID Number: G00155743

O 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

Page 6 of 6

Gartner

POL-BSFF-0000026 0100

