POL00137239
POL00137239

Gartner Consulting

POL-BSFF-0000026

POL00137239
POL00137239

Post Office Limited (POL) has 13,500 branches throughout the UK. Each year some
1.6 billion transactions are carried out across the counters. These are varied in
nature, from on-line banking, to complex postal services, to straightforward retail
sales.

The current Horizon system was implemented to support the operation of the
counters 10+ years ago. At a high level Horizon has the following functions:

1. Transaction capture and support (an ePOS system)
Maintaining accounts for the Sub Postmaster

Stock management in the branches

BN

Necessary technical support functions such as Estate Management, User access
control, security, etc.

POL has commissioned Fujitsu Services to upgrade Horizon to Horizon On-Line.

. Horizon On-line Design Review Page 1
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0001

POL00137239
POL00137239

Objectives of the new Horizon On-Line, or “Horizon Next Generation” (HNG):

= The primary objective of the upgrade is to reduce the costs of the Horizon
system to POL.

1. Reduction of IT operational costs in the data centre, support, etc.
2. Reduction of enhancement costs going forward
3. Reduction of staff time to handle transactions in the branches

#« There is no aim to provide additional business capabilities at this time; the
concept of ‘business equivalence’ has been agreed — the new Horizon On-Line
system must provide the same business outcomes as Horizon.

= However the HNG design architecture should align with POL’s emerging IT strategies
for future growth (see next slide)

= Upgraded training facilities (for Counter Training Offices) are required.

. Horizon On-line Design Review Page 2
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0002

POL00137239
POL00137239

Scott Lewis, Group Vice President Engagement Manager
Gary Long, Vice President Emeritus Consultant
Gartner Analyst Community Integration and SOA Analysts

¢ Jess Thompson (United States)
¢ Massimo Pezzini (ltaly)
e Kimihiko lijima (Japan)

. Horizon On-line Design Review Page 3
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0003

POL00137239
POL00137239

m Our objectivity ensures our approach and findings are based on sound data.
® Objective approaches and findings foster outcomes geared towards your
organisation — not solution driven by vendors or system integrators.

;th,_ ‘suhﬂé, com;;lex influences and 'mterreféttcns'hz;}s
at will tog&ther,matenaiiyaf‘fe)‘ your .

. Horizon On-line Design Review Page 4
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0004

POL00137239
POL00137239

Objectives of This Review

. Horizon On-line Design Review Page 5
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0005

POL00137239
POL00137239

The purpose of the review is to assess the proposed Horizon On-line design
against Post Office Limited’s (POL’s) emerging IT strategies.

1. Emerging Strategy: New Customer-Facing Devices

» Does the design allow additional devices in the branches to be integrated with
Horizon On-Line efficiently and effectively? Note that POL may wish to source
such devices and the software running on them from alternative suppliers.

2. Emerging Strategy: Ability to Use 3rd Party Services

= Wil it be possible to integrate software components from other suppliers into
the Horizon On-Line system? Note that for this to be of practical value the
components would have to deliver significant business functionality that does
not exist in Horizon On-Line, so to make this relevant examples of the
functionality that POL could require in the future will need to be identified.

3. Emerging Strategy: Use of POL Services by Partners

= Are the types of [HNG] component that POL may wish to exploit from other
channels sufficiently well encapsulated and independent that they will be
exploitable?

. Horizon On-line Design Review Page 6
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0006

POL00137239
POL00137239

Does the design allow additional devices in the branches (and elsewhere) to
be integrated with Horizon On-Line efficiently and effectively?

Examples:

» Another retailer’s terminal

= Kiosks — which use central services for pricing and payment

= Hand-held devices

= Smart card handlers

= Call Centres

= Consumer access to “virtual branch” services over the Internet

T Many such services are provided today (see www.postoffice.co.uk) but do not use the
same software or infrastructure.

. Horizon On-line Design Review Page 7
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0007

POL00137239
POL00137239

JS

e

Will it be possible to integrate software components from other suppliers
into the Horizon On-Line system?

Examples:
» Perform identity validation using third party services, such as credit agencies.

= B2B “cross-checking”: Mr. Jones just deposited GBP 20,000 — is this
reasonable?

= Post offices enter a brand new line-of-business with a more-complex multi-
step business model
» For example, consider selling health insurance where a physical examination is

required
= A post office terminal or a kiosk might be fitted out with a software abstraction
of a PIN pad.
Gartner Consulting Engz;c;riniggt(1)#2-2li2n;8l?§§i)g_n_§i\ﬂ'eyw2008 Page 8

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0008

POL00137239
POL00137239

Will new HNG components (services) be independent and well-encapsulated,
so that they may be “consumed” from new channels?

Examples:

= Major partners could develop their own applications (clients) that invoke HNG
components (services)

= The Royal Mail could build totally new products, that utilize some POL
services

. Horizon On-line Design Review Page 9
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0009

POL00137239
POL00137239

Analysis of the Review Objectives

. Horizon On-line Design Review Page 10
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0010

POL00137239
POL00137239

il

Objective 1: New Customer-Facing Devices

= There must be reasonable expectations that most HNG services can be
“plugged in” to the applications running on the new (unknown) devices.

Objective 2: Ability to Use 3rd Party Services

« There must be a reasonable hope that the 3 party services could be used,
even though they (a) would belong to many different organizations, (b) would
be written in undetermined computer languages and (c) execute on a variety of
hardware platforms.

Objective 3: Use of POL Services by Partners

+ This is essentially the inverse of Objective 2.

+ For all of the above, the cost and time to integrate must be reasonable.
+ Existing (well-designed) services should not have to be changed much if at all.

+ Security barriers must be scaled.

. Horizon On-line Design Review Page 11
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0011

POL00137239
POL00137239

1. Application Integration

Application integration is defined as “making independently designed application
systems work together.” It encompasses everything from tightly coupled, request/reply
exchanges among interdependent systems to simple, arms-length batch file transfers
between separate systems.

The two primary forms of application integration are:
* “application to application” (A2A) integration of the enterprise’s applications

» “business to business” (B2B) integration, between the applications of disparate
organizations.

2. Multi-Channel Architecture

Gartner defines multi-channel integration for retail delivery as the ability to manage all
transactions, data and workflows among customers, staff and back-office systems
across several channels. Multichannel integration includes at least two (and potentially
all) customer channels — including self-service devices such as kiosks and interactive
voice response (IVR), branch, offices, contact centers, online banking and mobile
devices.

Source: Gartner Research

. Horizon On-line Design Review =] 12
Gartner Consulting Engagement #222387830—31July 2008 age

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0012

POL00137239
POL00137239

S

atin
S

What is needed is a “Lego Block” approach ... but the blocks are coming
from different parties.

“Plug and play” is another way to think of the problem ... but Windows plug
and play happened only because Microsoft was dominant (and wealthy)
enough to make it happen.

By necessity, POL must be able to cope with sourcing hardware and
software from disparate, as-yet-unknown suppliers.

The best chance of realizing the goals lies in:

1. Use of a “service-oriented architecture” (SOA) to govern the design
2. Use of Internet (Web) technology and protocols
3.

Reliance on industry standards that are vendor-neutral and relevant to
SOA and the Web

4. Use of robust computer-to-computer “middleware” to make integration
easier and more reliable.

. Horizon On-line Design Review Page 13
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0013

POL00137239
POL00137239

Service-Oriented Architecture

A Quick Review of SOA Basics

. Horizon On-line Design Review Page 14
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0014

POL00137239
POL00137239

Service SOA Service
Consumer Transport |mplemen-

(Client) (ESB) tation |
; v Back end separated from front end

v Separately standmg mterface defmmons

wf Loosely coupled deployment

v Usable and useful across apphcatnons

Interfac.e “Interface

Proxy S O A
Reg|Stry Source: Gartner Research

A service (in software) is a software component that's suitable for cross-application access via a
separately-defined interface. Unlike the other kinds of software modules, a service represents a
business function, although it's implemented as technical software components. Some application
architectures also break out separate “data services”.

Services are designed to be building blocks for larger processes, transactions or applications.
SOA “request/reply services” are the most common and easily understood. Advanced SOA also
includes “event services”.

. Horizon On-line Design Review Page 15
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0015

POL00137239
POL00137239

Affinity With Business

Scope Processes
. K - .
Subroutines
G ranu Ia rity Source: Gartner Research
Gartner Consulting Eng:gc;rirrzugr?t223?:8?3??25?{}3’\’2008 Page 16

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0016

POL00137239
POL00137239

Alternative
P Transports

'l SOAP/XML/JMS
SOAP/XML/SMTP

New
1 Service

‘Wrapped
.1 Service

.| SOAP/XML/HTTP

j Wmmﬂm:'_‘_—
e XMUHTTP 2 |!
i ——ii&mﬂwmrﬁﬂum——

RSS/XML/HTTP

. Composite
- Service

RMI/Remoting
/| Shared Memory |

Pre-SOA
Applications

Service
Implementation

Source: Gartner Research

. Horizon On-line Design Review Page 17
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0017

POL00137239
POL00137239

Service

Business
Interfaces

Services

Customer (Self-Service)
Rich Internet Application

Call
Center .
Operator

Poﬂalz e
Reseller's
Customer Service
Application

s R

s

Application Server

Account Manager '

Mobile Gateway ;

Source: Gartner Research

. Horizon On-line Design Review Page 18
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0018

POL00137239
POL00137239

Potential future use at POL — after Horizon Online is deployed

== =1 Service
' Interfaces®

Checking Account
(new SOA application)

Customer Record

(integration of multiple SOA
and pre-SOA applications:
purchased, legacy,
outsourced)

Credit Bureau
(extemal service provider,

Backplane unknown architecture)

Source: Gartner Research

Example: Checking Overdraft Approval Transaction

. Horizon On-line Design Review Page 19
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0019

POL00137239
POL00137239

, - b

Set Goals and Collect Business/IT Requirements \\

Segregation of Duties

v~ Application Design Teams:
» Service consumers
« Service implementations

v Infrastructure Design Team (the future SOA CokE)
Joint Design/Independent Implementations
v Services jointly designed by application teams
v~ Technically validated by the infrastructure team
Deliver Infrastructure (SOA Backplane) First
v~ Design, implementation, testing
+ Service registry
v Validation against an agreed proof-of-concept
Deliver Services Before Consumer Applications
v~ Plan for services to be available and tested before relevant consumers
Test, Test and Test
v Plan for at least 25% of development effort on integration testing
Log, Log and Log
¥~ Multiple turn-on/off logs on the "borderlines” /

Source: Gartner Research

. Horizon On-line Design Review Page 20
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0020

POL00137239
POL00137239

Middleware

The “Plumbing” for Modern Applications

" Horizon On-line Design Review Page 21
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0021

POL00137239
POL00137239

SOA Middleware: Middleware is the software
“glue” that helps programs

® App”cation Server and databases work together,
even though they may be on

* Enterprise Service Bus (ESB) different computers.

* Integration Suite Middleware is not inherently

complicated or mysterious,
but it can seem that way if the
concepts and terminology are
not explained.

Service-Oriented Applications are not practical without one or more forms of
middleware. Each of the middleware types discussed here may be needed,
depending on this size and complexity of the SOA initiative(s).

Also see Appendix A: The Enterprise Service Bus: Communication Backbone for SOA

. Horizon On-line Design Review Page 22
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0022

POL00137239

POL00137239

Custom Applications

ma

s

e
oo

o
o

= S 25
- S -
R SR A
Sae SIS G O G

S S50 R
e
R s e s o
G

ioning

IS

Prov
Management

S o
OO TS
s

O A A OO OO S0
o

Page 23
POL-BSFF-0000026_0023

Gartner Research

Source

Model

ion

ing

iew

ing Language(s)

Rev

ign

Des

line

Programm

Programm

OS Isolation

Device Isolation

DBMS Isolation

COMM Isolat
izon On

Hor
Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

ization
Memory
Threading
Resource Pooling
Task

im

Opti

g

n

t

s
»%.».

' 5
e Sy
oD O
o @ ot

== 73

-~

Gartner Consu

POL00137239
POL00137239

pplication

Adapter ~ Adapter

Core Service Bus Technology Typical ESB Product Features

» Program-to-program communication « Transformation

» Support for Web services standards « Service registry

» Service bindings « Content-based routing

- Mediation + Service orchestration

« Message Logging » Security

» Protocol Bridging - Adapters Source: Gartner Rescarch
Gartner Consulting Ergageraent #2258 85081 uly 2008 Page 24

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0024

POL00137239
POL00137239

Database A Database B

Application A Application B

OS 1 o @« e 2 = v Adanter for 0S

Network | Network . Network
Software | Software] Software

Capabilities include ESB features, plus more. The two are becoming more and more alike.

Source: Gartner Research

. Horizon On-line Design Review Page 25
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0025

POL00137239
POL00137239

1 Software Vendors (ESB | IBM, Fujitsu, TIBCO, Software AG, etc.
and IS) » Upfront costs are significant
¢ Extremely competitive market (good)

e Validated against a wide base of users
e Support and regular enhancements

2 Open Source Software | Apache, ChainForge, MuleSource, Sun, Red Hat
(ESB) ¢ Not normally as feature-rich; ESBs not I1Ss

¢ Can be very cost-competitive, initially

e Vendor support may be available

¢ |[nternal support needed as well

3 Custom Built Rare, but Happens

¢ Very costly, both development and enhancements
e |f upfront cost is a barrier, consider OSS

e Last resort!

. Horizon On-line Design Review Page 26
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0026

POL00137239
POL00137239

“HNG-X” Architecture Review

The Project Team’s Architectural Approach

(As Relevant to the Design Review Objectives)

. Horizon On-line Design Review Page 27
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0027

POL00137239
POL00137239

1. Reviewed “Solution Architecture Outline” + 12 Detailed
Architecture Documents

2. Concentrated on:

¢ High-Level Architecture

e Interface and Integration Points (per the questions posed by POL)
» Middleware Usage

e Protocols

e Relevant Standards

3. Annotated Key Architectural Diagrams

4. Reviewed Understanding with Fujitsu Services Team

. Horizon On-line Design Review Page 28
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0028

POL00137239
POL00137239

§ S &

8

eci
i

Architectural principles are stated and seem generally sound and realistic

1
2. Documents are well written, thorough for the most part
* Include Assumptions
* Include Risks / Risk Mitigation Approach
» One key area — “PDL scripts” — was not covered in the architecture documents. (Fujitsu
Services has since provided supplementary information.)
3. XML usage is appropriate

4. Service-Oriented Architecture (SOA) with “Stateless” Request/Reply Services
» There are few if any HNG-X “business services”
e HNG-X “data services” are a major improvement over current system
¢ A number of encapsulated utility services exist
» Architecture does not provide for Event Services

5. Branch data is stored in a relational database, for the first time
6. Fujitsu “Interstage” Application Server is the Primary Middleware

7. Business logic and user interface are “data driven” by scripts (providing
compatibility with the current Horizon business logic)

. Horizon On-line Design Review Page 29
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0029

POL00137239
POL00137239

High-Level View — Some Modules Omitted

External

I
| External _ I
I Interfaces ~ Branch

I Data Centre

 Database

~ Data Se""ces | | Ref Data

Branch PCs

I Layer

For a more complete picture, see the diagrams in Appendix A.

. Horizon On-line Design Review Page 30
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0030

POL00137239
POL00137239

Data services are relatively
simple. They transform XML
transactions into relational
records and store them on the
database.

Network traffic is minimized by
sending completed transactions
to the data center.

Business logic is determined by
“scripts” which are interpreted by
the Process Definition Language
interpreter on the Branch PCs.

. PBrancn |

Ref. Data
(Scripts)

FILETI88TILL Interactions

Presentation Layer

Data Centre

Branch PCs

Gartner Consulting

Horizon On-line Design Review
Engagement #222387830—31July 2008
Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 31

POL-BSFF-0000026_0031

POL00137239
POL00137239

User Interface / Workflow & Scripting Approach

The XML-based Process Definition Language (PDL), run-time PDL interpreter and
accompanying scripts are a unique characteristic of the HNG-X architecture. Rather than
hand-coding screens, presentation logic and business logic for each transaction (there are
hundreds), each transaction is embodied in a PDL script.

A generic user interface was written in Java and Sun’s “Swing” GUI toolkit. The PDL
interpreter, also in Java, is based on the open source “JEXL” interpreter from the Apache
foundation. It has been lightly modified, mostly to provide stronger constraints.

Scripts (and associated context files) control such things as:

1. Variable portions of the screen display, including titles and field prompts
2. Edits

3. Usage of transaction-specific reference data, such as prices

4. Messages (error, confirmation, etc.)

Scripts also trigger the invocation of authentication, the recording of business events and
various utility services that execute on servers at the data center (as they should).

Also see the diagrams in Appendix A.

. Horizon On-line Design Review Page 32
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0032

POL00137239
POL00137239

Advantages:

1. Compact, flexible and efficient. Lets minimally-configured PCs execute hundreds
of different transactions.

2. Post Office business analysts can create new transactions (in spreadsheets!)
themselves. New transactions can be deployed without changes to the code base.

3. Backward compatibility with current Horizon (similar scripts).

4. Use of open source “JEXL” engine reduced development cost and risk.
Challenges:

1. May make “plug and play” more difficult.

2. Presentation and business logic are intermixed. (But it appears that there is very
little complex business logic required.)

3. This is not a traditional approach. New developers will face a learning curve.
Conclusion:

1. All solution architects have to deal with “trade-offs”. This is a reasonable
approach given the requirements and constraints.

. Horizon On-line Design Review Page 33
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0033

POL00137239
POL00137239

.

.

The HNG-X architecture is partially SOA.

¢ The data services are indeed SOA. They are properly encapsulated
and invoked via XML over HTTP.

e Business logic is not encapsulated in services, and it resides on client
PCs — not at the data centre.

¢ Business logic and (variable portions of) presentation logic are mixed
together in the same scripts.

e External Web services can be invoked, from the Branch PCs, via proxy
services at the data centre.

The placement of business logic on the |
Branch PCs and the use of a compact |
interpreter maximize the use of i : |
modestly-configured PCs and minimize | __ $33388883848 interactions |
|
|

the load on the network. It is not SOA, I
but it is a reasonable approach given the |
constraints. b ommowm omm mm o omm oem e e omm o oew oo

Presentation Layer

. Horizon On-line Design Review Page 34
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0034

POL00137239
POL00137239

13.1.1 Services are assumed to be stateless

Services will be stateless and self-contained within one request/response exchange. ... This assumption is consistent with the
Post Offices requirement that the architecture is to be according to SOA principles.

13.1.2 No further third party software licences will be acquired

We have worked under the assumption that no further software licences for third party software will be acquired,
and that what is provided by Interstage is our limitation. This assumption is important to make explicit, as it has guided
some of our architectural decisions, such as:

-Creation of a custom NIO Integration Framework: An alternative to this framework, or at least the potential complexity of it
would have been to get a licence for a highly scalable messaging system, such as IBM Websphere MQ and build on top of
that. However, with third-party licences being deemed unsuitable due to commercial and cost reasons ...

13.1.3 The network is limited to synchronous request/response interactions from the counter

We have assumed, given the network topology and architecture that the most feasible and reliable mode of interaction
between the counter and server is a traditional request/response synchronous mode of operation over http.

13.14 An absolute minimum of changes will be done to existing backend infrastructure and applications

There might have been a case for revamping the estate by creating a more unified integration backbone architecture using
messaging and moving away from the current approach based on point-to-point integration with batch jobs and direct
network calls to interrelated systems, which makes for a somewhat tightly coupled architecture. The architecture does
open the way for the possible future implementation of an Enterprise Service Bus, something that should be
considered as part of long term planning for the POL estate.

©Copyright Fujitsu Services Ltd 2007 COMMERCIAL IN CONFIDENCE
. Horizon On-line Design Review Page 35
Gartner Consulti ng Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0035

POL00137239
POL00137239

13.2.1 Implementation risk of custom NIO integration framework

There is an inherent risk in implementing the proposed NIO integration framework (section 2.4.3.2) proposed in this
document. The NIO API and writing concurrent code is error-prone and complex to test. It is possible that if the
framework is not written by experienced and highly skilled developers that it will not be viable.

13.2.11 Risk of occurrence
It is dependent on development experience.

If developers are inexperienced in developing I/O and concurrent applications, the risk is very high. If developers are
skilled and experienced in writing I/O and concurrent applications the risk will be low to medium.

13.21.2 Risk impact
Very high — any integration with third party applications such as DVLA, Banking etc will fail.
13.2.1.3 Risk mitigation

Only allow the most experienced and skilled developers with experience in concurrent programming write any code on
this particular component. Furthermore, it is important to do testing rigorously, including unit testing based both on
deterministic and probabilistic approaches.

13.2.2 Implementation risk of custom NIO HTTP Multiplexer
(text similar to 13.2.1)

©Copyright Fujitsu Services Ltd 2007 COMMERCIAL IN CONFIDENCE
. Horizon On-line Design Review Page 36
Gartner Consulti ng Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0036

POL00137239

POL00137239

Application Server

Fujitsu Interstage Application Server (limited use)
and Application Client Software (JVM only)

Message-Oriented
Middleware

Fujitsu Java Messaging Service (JMS) - limited use
due to performance issues

(Riposte is being retired with no direct
replacement.)

Enterprise Service Bus
(ESB) or Integration Suite

» Online Services Router (OSR) — Custom Built
« NIO HTTP Multiplexer = Custom
* NIO Connectivity Framework — Custom

« Custom Transformers and Protocol Adapters

Other

« Branch Database provides the connection
between branch transactions and the back-office
(batch) apps

« Sterling’s “Connect:Direct” for managed file
transfer

Gartner Consulting

Horizon On-line Design Review Page 37

Engagement #222387830—31July 2008
Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0037

POL00137239
POL00137239

Findings

. Horizon On-line Design Review Page 38
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0038

POL00137239
POL00137239

e

§)‘§§§

Does the design allow additional devices in the branches (and elsewhere) to be
integrated with Horizon On-Line efficiently and effectively?

DIFFICULTY WILL VARY depending on the device and it's scope / ownership.

1. For a PC-based Kiosk running in a branch the workflow engine (PDL interpreter) could be
ported and a new presentation layer constructed. Not too bad.

2. For a dedicated call centre PC, an approach similar to the existing one seems reasonable. The
user interface would probably need to be modified / augmented to be more suitable for a call
centre operator.

3. For hand-held devices that run Java a port might be possible. Data storage constraints might
mean that only one or a few scripts could reside on the device at a time. Some logic might have
to be moved to a server.

4. For other situations the user interface + business logic (script + interpreter) presents a
substantial barrier.

* For a Web browser, an “Ajax” approach with XHTML & JavaScript might replace the Swing
& PDL script architecture?

* |n situations where only a few of the transactions are required, it would be easiest to simply
re-code the transaction in a traditional fashion, and use only business-oriented reference
data such as prices.

. Horizon On-line Design Review Page 39
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0039

POL00137239
POL00137239

Will it be possible to integrate software components from other suppliers into the
Horizon On-Line system?

Answer .
. f;,a;:i YES ‘--* lf the new software compone Tt -
| ellﬂ-e'ncapsulated

lf they are SOA or Web Semces (commcn)

3 i
G e e s s o wlw e e o

. :;l"nvokmg external services through
DI”OXIes at the data centre .

. Horizon On-line Design Review Page 40
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0040

POL00137239
POL00137239

Will new HNG components (services) be independent and well-encapsulated, so
that they may be “consumed” from new channels?

Answer:
= YES — For Data Services

= NO - For transaction capture and business logic

= The PC-based business logic (script + interpreter) presents a substantial barrier.

Horizon On-line Design Review

Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0041

POL00137239
POL00137239

Summarizing The Answers To The Three Questions:

1. New Customer-Facing Devices?
« Yes, but difficulty will vary depending on the device and its ownership

2. Ability to Use 3 Party Services?
* Yes

3. Use of POL Services by Partners?
« Yes for data services
* No for transaction capture and business logic (for good reason)

Soundness Of The Overall Architecture:

Overall, the HNG-X architecture is first rate. Gartner does not recommend
changing it in any substantial way.

Placement of business logic on the Branch PCs and the use of a compact interpreter
maximize the use of modestly-configured PCs and minimize the load on the network.
All solution architects have {o deal with "trade-offs”; the HNG-X architects crafted a
strong solution that would be hard to improve upon.

. Horizon On-line Design Review Page 42
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0042

POL00137239
POL00137239

Recommendations

(Current Project)

. Horizon On-line Design Review Page 43
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0043

POL00137239
POL00137239

1. Reduce the amount of custom middleware and other sorts of systems
software (replace with commercial products or possibly open source).

e The risk is high (appropriately recognized by the Fujitsu Services team)

e Exceptionally skilled developers are needed — middleware is an arcane
specialty

e The cost of development and testing is high (and not yet complete)
e Future maintenance will be a severe challenge and very costly
e Future external integration projects will be easier with specialized tools

2. Encapsulate Business Logic (if possible)

e The business layer and presentation layer are currently too-tightly coupled,
making it hard to re-use business logic in new situations

e Look at alternative designs that can lower the degree of coupling so as to
further reuse of the more complex pieces of business logic in new situations --
without losing the considerable benefit of the scripting approach

. Horizon On-line Design Review Page 44
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0044

POL00137239
POL00137239

1. Adopt Commercial or Open Source Middleware
e “SOA Backplane” — Commercial ESB or Integration Suite
e An open source software (OSS) ESB may also be considered
e Use commercial or OSS software for load-balancing, Web server, etc.

2. Re-factor the HNG-X Application / Eliminate Custom Middleware Code
e Branch Access Layer (BAL)
e Remote Services Interface (RSI)
e Online Services Router (OSR)
e Other, as appropriate

3. Custom Transformers and Protocol Adapters
e Plug into the ESB or Integration Suite
e Future transformations may be done in the ESB or Integration Suite
e Off-the shelf adapters are available

Also see Appendix A: The Enterprise Service Bus: Communication Backbone for SOA; Where to Use
an Enterprise Service Bus and Why and Open Source in ESB Suites, 2008

. Horizon On-line Design Review Page 45
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0045

POL00137239

POL00137239

Commercial Middleware

» Extra cost and time at outset

+ Offset by decreased development cost and time
* Decreased testing costs

» Considerable savings in future costs

Project Schedule

» Re-factoring may lengthen coding phase
+» Testing time will decrease

Deployment » Lower probability of middleware defects surfacing in deployment
+ Lower probability of scalability and reliability problems
« Shorter “Hydra” period (Horizon and Horizon Online in parallel)
Risk * Reduced risk due to proven, industrial-strength middleware

Enhancements &
Maintenance

* Lower costs over the lifespan of the application
» Reduced middleware maintenance
» Better middleware documentation, training, enhancements, etc.

Gartner Consulting

Horizon On-line Design Review Page 46

Engagement #222387830—31July 2008
Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0046

POL00137239
POL00137239

F ‘ Gartner’s “Magic Quadrant for Application
| Infrastructure for Back-End Application
_‘ : Integration Projects” rates vendors that
Oracle ' offer various products for this purpose,

’ including ESBs and Integration Suites.

Wigrosoft Tiboo Softewre

BEA Systems

The HNG-X project does not currently use

Axway. T
this type of product.

ST
OEYElemS

IrterSystams

sap webMelhods & Somware AG . — :
Mitachi. » Since publication, Oracle has acquired
FomaxSolt - BEA and Software AG has acquired
NEC webMethods.
Magic Soltwars
. Source: Gartner Research
. Horizon On-line Design Review Page 47
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0047

POL00137239
POL00137239

Recommendations

(Future)

. Horizon On-line Design Review Page 48
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0048

POL00137239
POL00137239

Introduction Spreading Exploitation Plateau

More : : : :
Risk a s e i
' Technology | |
Risk of SOA | E
Project ; | |
Failures ! : :
. . Lack of | |
' Governance | :
! Risk ! :
Less 5 E E E
Risk : ! : :

' Time ‘ =

Source: Gartner Research

Gartner Consulting Engagzﬂriggt%gizne?s?g;?iﬁﬁwzoos Page 49

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0049

POL00137239
POL00137239

Get Good at “Technical SOA”

1. Master the SOA technology
e Today itis new
e Tomorrow it should be common, “standard” at POL

2. Move further towards “advanced SOA”, including event services in
addition to request/reply services.

o Consider the use of event services (message-based) to integrate with
the back-office (batch) applications on more of a real-time basis.

3. Promote the design of additional SOA applications

4. Be prepared to educate and train new project teams

. Horizon On-line Design Review Page 50
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0050

POL00137239
POL00137239

Success Factors for SOA Governance

1. A funding model to maintain services as shared assets

Development process and architectural standards that incorporate SOA

SR

Guidelines to address what to build for reuse and what is specific to an
application

B

An Integration Competency Center (ICC) or “SOA Center of Excellence”

5. A process by which existing software is cataloged, understood, and
harvested for services

You need just enough governance:
* Too little governance will kill your SOA initiative

« Too much governance will kill your SOA initiative

. Horizon On-line Design Review Page 51
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0051

POL00137239
POL00137239

Exploit Shared Services

1. Largest single future payoff
2. Start with the Post Office Web site?

3. Be ready for the impact (succeed on the first try):
e Some candidate services may need to be enhanced
¢ Testing has to be extra rigorous
e Support the new “consuming” applications intensively

. Horizon On-line Design Review Page 52
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0052

POL00137239
POL00137239

Goal/Focus Examples of SOA Technical Metrics Optimal Trend

f Services Deployed)
f Consumer Applications Deployed
f Services/ # of Consumers

f Services Shared by at Least Two
plications

erage :Syharing oo

/umeof Serv:ce Requests
ount of Requests per Service
ﬂr‘wce;Re‘questResponse Time

mberof Newerwces Developed per
ch New Consumer Application

ne to Deployment for New Consumer
plications

st oprl/cat/on Maintenance

o

Source: Gartner Research

. Horizon On-line Design Review Page 53
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0053

POL00137239
POL00137239

Service Definition Process

Standardized Business Objects

Service Registry and Life
Cycle Management Tools

Reward Policies

/

Source: Gartner Research

Gartner Consulting

Horizon On-line Design Review
Engagement #222387830—31July 2008
Entire contents © 2008 Gartner, Inc. All rights reserved.

Page 54

POL-BSFF-0000026_0054

POL00137239
POL00137239

. Horizon On-line Design Review Page 55
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0055

POL00137239
POL00137239

Questions and Comments?

. Horizon On-line Design Review Page 56
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0056

POL00137239
POL00137239

APPENDIX A

Diagrams from HNG-X Project

Annotated

. Horizon On-line Design Review Page 57
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0057

HNG-X
Application
Architecture

(Overview)

@ Via Remote Services
Interface (RSI) - not
shown

©Copyright Fujitsu Services Ltd 2007

POL00137239
POL00137239

E. I Client Ti I

Client 1

Online
Onime [client N

POL Online
Workstations

[

External Client n@e

Tier

Data Tier

Internal Online Data |
(APOP, NPS, TES, <
PAF, Help)

A

Branch Database

Branch Access Tier

Branch Presentation Tier

[Baten —
Caamn Bnt M FOL RDS
liert 1 & other
lent Ref:reice Other
Data sotiree: Places
-,
i
]
]
+ Data Centre
v Boundary
:
]
]
]
'
]
Legacy Data (TPS, :
APS DRS, LFS, € :
RDMC/RDDS) | '
A :
- | :
[]
]
]
]
]
]
_______________]
)
[]
]
<]
]
]
]
[]
]
]
:
]
]
]
]
]
]
]
]
[]
[]
]
]
[]
]
]
[]
]
]
]
Branch
Offices

COMMERCIAL IN CONFIDENCE

From Solution Architecture Outline

POL-BSFF-0000026_0058

POL00137239

POL00137239
The BAL serves as the interface between the counter and other data centre systems. it communicates
with the following semvers:
+« Banking Agents —this is to perform banking transactions on behalf of a counter
« Web Service Agents —to allow a counter to communicate with other external systems.
* BRDB —the counter accesses the BRDB through the BAL servers
« Key Management Server — to retrieve any cryptographic keys or seeds that may be reguired for
______________ the BAL or the counter,
E Web i +« Management Interface — A MK based management server is used to control and monitor BAL
i Services i SEnVErs.
______:_—_____—___________ — - ______)@ Feanen Hatahows
E et S . : ‘
Buprars
I__'_'_'_'_'_'_'_'_'_'_‘_‘_'_'_'_'_'_'_'_"“"""""“'"'“""">
i Service Router ! ,
: | ¥
' * : stss'ct::imm
i Message : tover
! Transformers H .
: ! i 4 x:««-r}m&.ig‘;‘ﬁi
_____________________ 1
T 'I_‘_'_"_‘_'_‘_‘_'_'_‘_“_‘_‘_’_‘_'_‘_‘_ g
i XML over HTTP .
! (not SOAP) '
| e e e e e e Y
Jo— Via Remote
Fiaure 1 — BAL Environment Services Interface
igure 1 - By AN sHImEl (RSI) - not shown
BAL servers are stateless, the nurmber deployved can be easily altered so the eight servers shown inthe
diagram above should he used as a guide only, less or mare servers could be deploved as is required.
©Copyr|ght FUjitSU Services Ltd 2007 COMMERCIAL IN CONFIDENCE From Branch Access Layer

POL-BSFF-0000026_0059

POL00137239
POL00137239

Workflow Subsystem

cmp Workflow Subsystem Realisation //‘

Workflow EnactmentEngine

T

«realises»

jexl:Script

+ getText(}: String

+ execute(JexiContexty 1 Object
+ execuie(JexiContext, int, int): Gbje

+ Seriptiorg.apache.commuonsijexi. 8o

pdi:interpreter
4+ execuin(): Object
+ expouteExpression(Striang. Mapi: Db
+ gelContext(}: POLScriptlontext
+ getData(): PDLScriptConiext
+ setAsynchronous(hcoiean) ; vaid
+ setBic(iBusinessLogicOpjent) i volig
+ setBloName(String): void
+ setData{Map): void
+ MethodName(String) i veis
+ tSoript(Soript) : void
-script -context
PDLScriptCont
IScriptExecution 8tate
pdl::JexIScriptContext ;
+ clone(): Object
+ getActionFReturnValue(): Cbiect
+ § sint
+ getNodeSiate(int, int} : Object
+ getPosition(int) int
+ itioaMap{): Map
+ getReferenceDataManager(): IReferanceDataManags
+ getReturnDepthi{) :int :
+ getReturnPosition():int
+ getVars{}: Map
+ isReturn Positioa(int, ini}: boolean
+ setMode(int): void
+ setilode State (int, int, Objeot): vaid
+ setPosition{int, int): void
+ setVarstMagp): void
+ teString() @ String

© Fujitsu Services 2008

POL-BSFF-0000026_0060

POL00137239
POL00137239

© Fujitsu Services 2008

Delivering AP-ADC to the Counter

EPVN APADC Lifecycle
«Excely g
AP-ADCSaipt
™~
N
T
om» 3
APADCXML
e
N
-
= ’//
POL =
o
\\

DeiverPDLLe |
Reference Data |
DeliverySysterr |

POL-BSFF-0000026_0061

POL00137239

POL00137239
The Online Serice Routing architecture will not run within a J2EE container. This is due to two factors:
. +« Use of a custorn HTTP multiplexer: This utilises custom threading and 1O code to efficiently
On"ne manage resources during peak server loads.
. ¢ Custom NIO connectivity frammewark: This is the most efficient way for Java to handle socket
Sel'Vlce hased communications.
Router
v Sendon Ry O i
| Service Router |
i (custom Java)
i Message E
| Transformers for
i Multiple Protocols |
| __._(adapters) ____:
©Copyright Fujitsu Services Ltd 2007 COMMERCIAL IN CONFIDENCE From Branch Access Layer

POL-BSFF-0000026_0062

POL00137239
POL00137239

© Fujitsu Services 2008

OSR Internals

Counter t

Y
Non-blocking HTTF acceptor

v

Queue and Thread Management |« JMX Monitoring

v

Message Filters
LN

Service Invocation Framework

Message .
Context

Service

Web Service Autherisation Database || Key Server
Interface Agent Interface | Interface Interface

POL-BSFF-0000026_0063

POL00137239
POL00137239

External Message-based Clients External Web Services
External I t 'f
Systems LINK A&L CAPO Streamiine e-pay DVLA CAConnector | | MoneyGram n e aces
Rl hal N » *
—F \ ! 3 to
\ / / \ \
csm | / / \ \\
=S | | External
....................... X//// \‘
VS \ \ i
Dat e . \ ' ysiems
ata L/Authorisﬁjun Agents Network Persistent Web Services \ \ \
Centre Store - - -
NBS | DCS | ETS 8 APOP | | PAF || DVIA | | %0 || MoneyGram
Training Web Service The interfaces between the online serice components in the Data Centre and the external clients are
documented in logical terms by an Application Interface Specification (AIS) and in physical terms by a
APOP, DVLA“Mo'rle'yGram, NBS, Technical Interface Specification (TIS) - see Table 2 helow. The interfaces between the online service
DCS, ETS components and the internal clients are defined by an AIS anly
T Chient Servies Intesfacz Type | AIS s
h sy AL NBS 150 8563 NBIIFSI026 NEMIFS028
BAPOP APOP FLISGL APAFSOG4 nia
Branch Database CaConnectar | Help Desk SOAP A7 BAY
| CAPO NES 150 8563 NBIIFS 1025 NEMIF S1027
Training : Live DVLA DWLA HTTP DVAFSO0 DVAFSAI02
| o pay ET8 APACS 30 ETAFSM0T ETAFSI0G
LINK MBS 150 8583 NBNIFS 024 NEYIFS025
MoneyGram MoneyGram | SOAP APIAISNGS THIFSA03
- v - PAF PAF API Guickaddress | nia
Branch Access Layer Streamine oes APACS 30and | EFAFSD02 EFIFSM01
(Authentication, recovery and service routing) SMS
Table 2 - External Interface Specifications
- The sel of exiernal clients falls into two groups: those that use synchronous® web protocols (DVLA,
| CAConnector and MoneyGram) and those that use asynchronous RAC message-based protocols
i
Routing & Load Balancing (via CSM network)
Gartner Notes:
£ M
Branch 1. Does not show new “service
ranc 5
Estate hub” used to access external Web
Counters Services,
Version 3 29-May -2007

©Copyright Fujitsu Services Ltd 2007

COMMERCIAL IN CONFIDENCE

2. “CBM” is Cisco Network (now
“ACHY

From Architecture - Online Service|

POL-BSFF-0000026_0064

POL00137239
POL00137239

APPENDIX B

Gartner Research Papers

The Enterprise Service Bus: Communication Backbone for SOA

SOA Applications Should Mix Client/Server, EDA and Conversational Patterns
Where to Use an Enterprise Service Bus and Why

Best Practice for Software Architecture: Intermediation

Open Source in ESB Suites, 2008

A O o

. Horizon On-line Design Review Page 65
Gartner Consulting Engagement #222387830—31July 2008

Entire contents © 2008 Gartner, Inc. All rights reserved.

POL-BSFF-0000026_0065

Gartner Research

Publication Date: 3 May 2007 ID Number: G00143223

The Enterprise Service Bus: Communication Backbone
for SOA

Roy W. Schulte

This research provides a definition and overview of enterprise service buses (ESBs). IT
managers, architects and developers who are building, buying or contracting for SOA
applications and services need to understand the role of ESBs for complementing basic
communication software stacks and development tools.

Key Findings

e ESBs are a type of middleware that combines support for service-oriented architecture
(SOA) and Web services with features from several older types of middleware. All ESBs
implement SOA service binding, message-at-a-time communication and related
features.

e ESBs support SOA applications better than traditional middleware because ESBs
separate communication and integration logic from the business application logic.

e The industry has had some confusion about ESBs because the term is used to cover the
core bus technology, ESB products and ESB design patterns.

e ESB products contain more than just plain SOA-oriented communication buses.
Recommendations

e Companies implementing SOA on a large scale should add ESB technology to their IT
strategic plans and their technical architectures.

e See related Gartner research to understand ESB product features, packaging and
management issues:

o "Where to Use an Enterprise Service Bus and Why"
¢ "Enterprise Service Bus Usage Scenarios and Product Categories"

e "Succeeding With Multiple SOA Service Domains and Disparate ESBs"

© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Reproduction and distribution of this publication in any form
without prior written permission is forbidden. The information contained herein has been obtained from sources believed to
be reliable. Gartner disclaims all warranties as to the accuracy, completeness or adequacy of such information. Although
Gartner's research may discuss legal issues related to the information technology business, Gartner does not provide legal
advice or services and its research should not be construed or used as such. Gartner shall have no liability for errors,
omissions or inadequacies in the information contained herein or for interpretations thereof. The opinions expressed herein
are subject to change without notice.

POLO00137239
POL00137239

POL-BSFF-0000026_0066

ANALYSIS

The industry has been confused about ESBs, because the term covers the core service bus, ESB
products and ESB design patterns.

e The core bus is a communication backbone, a set of middleware capabilities that is built
into a variety of commercial products, including, but not limited to, those called “ESBs.”

e Commercial products called “ESBSs” contain features that include, but go beyond, the
core communication bus.

o ESB design patterns are SOA application topographies that take advantage of the
characteristics of ESB technology.

These are explained further in the next sections of this research.

The Core Service Bus Technology

The core service bus is a Web-services-capable communication subsystem that has the ability to
support optional mediation functions, particularly for SOA applications, but not limited to SOA
applications. To qualify as an ESB, middleware must:

e Implement synchronous and asynchronous program-to-program communication, moving
messages between SOA service consumer modules and service provider modules at
runtime. An ESB may also move files, database rows and other data.

e Support the fundamental Web and Web services standards, including Uniform Resource
Identifiers, Extensible Markup Language (XML), SOAP and Web Services Description
Language (WSDL). Almost all ESBs also move non-XML messages and data and offer
additional proprietary communication protocols.

e Implement service binding to create associations between SOA consumer and provider
modules.

e Have an architecture that enables it to apply optional intermediary functions to
messages in flight. Mediation functions can be added to the core bus to, for example,
inspect, validate, reroute, transform, enrich, log and track messages as they pass
through.

e Support typed messages, that is, messages for which contents are explicitly defined and
documented. This is necessary to implement many kinds of mediation.

ESBs support SOA applications better than message-oriented middleware (MOM), plain SOAP
stacks and other traditional middleware, because ESBs provide a way to plug in optional value-
added mediation and integration functions without having to implement a separate custom-built
proxy server or wrapper. ESBs make it easier to offload communication and integration functions
from the application developer, so developers can focus on the business logic. Some addressing
and policy concerns, such as security, protocol choice and quality-of-service options, may be
postponed to deployment time or runtime. This approach has major implications for development
tools, not just the ESB.

Small or simple SOA applications can run fine without an ESB. For example, they can use point-
to-point Web service connections supported by SOAP message handlers (SOAP/XML/HTTP
stacks), plain old XML (POX) on HTTP or various forms of middleware. However, large, long-

Publication Date: 3 May 2007/ID Number: G00143223 Page 2 of 7
© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0067

living or frequently changing SOA service domains benefit from the features provided by an ESB.
Further details on the technical characteristics of ESBs and where they are helpful are included in
"Where to Use an Enterprise Service Bus and Why."

The core bus is rarely bought as a separate product. In almost all cases, companies acquire the
bus as part of a larger product, such as embedded in an SOA middleware infrastructure product
that contains many other features (see the next section) or in the operating system (for example,
Microsoft's Windows Communication Foundation [WCF] is the service bus in Vista and the
forthcoming Windows “Longhorn” server, and it can also run on Windows XP Service Pack 2 and
Windows Server 2003).

ESB Products

ESB products are just one of many types of SOA infrastructure product. SOA infrastructure
products are diverse in their packaging and labeling, but all contain the core SOA bus technology
(described above) and other features. SOA infrastructure products can be sorted into three
general categories, described in order of increasing levels of feature bundling:

e ESB products
e SOA platforms with development and presentation features
e Full SOA software stacks

1. ESB Products

ESB products are the most unbundled. Vendors tend to call their SOA infrastructure products
“ESBs” if their capabilities are limited to communication and integration tasks. ESB products have
the core bus (described above), and they typically include:

e Transformation

e A basic registry or name space that supports binding and some type of service
virtualization (for example, using a service name as an alias to bind to an alternative
service implementation)

e Content-based routing and basic service orchestration

e Security, including authentication and authorization, generally working in conjunction
with external identity management, encryption and decryption services

e Optional adapters to files, database management systems (DBMSs), legacy platforms
and packaged applications

They often also have:
e Message validation
e Some transaction management capabilities
e Message logging and auditing
e Protocol bridging

e Load balancing

e Failover
Publication Date: 3 May 2007/ID Number: G00143223 Page 3of 7
© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0068

2. SOA Platforms With Development and Presentation Features

A product that is missing some of these features is still an ESB as long as it includes the core bus
and some subset of the "typical" or "often also have" functions.

An SOA infrastructure product that provides additional development, presentation and monitoring
features may be called an “SOA suite,” "service grid," “integration suite,” “Web services
framework,” “composite application platform” or “service deployment platform.” Such products
contain the core bus, some or all the "ESB product” features listed above, plus some or all the
following:

e Process modeling, long-running business process management, process simulation and
workflow services for human activities

¢ Repository or other metadata management tools
e Portal, Ajax, mobile and other presentation-related services

¢ Service monitoring and management capabilities for tracking availability, response times
and other service-level issues

e Federated (“virtual”) database and data service support
e Business activity monitoring

3. Full SOA Software Stacks

A full software stack for SOA applications bundles even more. If an SOA infrastructure product
contains many of the features described in the previous two categories, includes its own general-
purpose application server and is offered with a comprehensive application development
environment, it is more likely to be called an application platform suite (APS), business services
fabric, enterprise services infrastructure, integrated service environment (ISE), or portal platform
suite. The label business process management suite (BPMS) is used if process modeling,
simulation, management and workflow are emphasized.

In the absence of consistent vendor packaging and naming decisions, all product labels in the
SOA infrastructure market are somewhat arbitrary. We have outlined three general levels of
packaging: ESB product, SOA platform with development and presentation features, and full SOA
software stack with application server. However, commercial products are not consistently
assigned to those categories. The same product may be called an ESB, service grid, enterprise
service infrastructure, business service fabric, BPMS, APS or ISE, depending on who is talking
and what they think the listener wants to hear.

In almost all cases, companies do not buy one SOA infrastructure product from one vendor;
rather, they use products from several vendors (see "Enterprise Service Bus Usage Scenarios
and Product Categories").

The ESB ("SOA Backplane™) Pattern

Using an ESB (or an SOA infrastructure product that is a superset of an ESB) has important
implications for SOA application architecture. An SOA application without ESB capabilities puts
consumer modules in direct contact with service provider modules. The intelligence for finding the
right service provider, orchestrating the flow, transforming messages and other functions is coded
into the consumer or provider modules (if such features are needed). By contrast, SOA systems
that use an ESB and related services to implement the concept of a "SOA backplane" offload
many of these addressing and mediation functions to the ESB and service engines that are

Publication Date: 3 May 2007/ID Number: G00143223 Page 4 of 7
© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0069

plugged into the ESB. The programming model, techniques of service assembly and methods of
implementing various policy and quality-of-service levels are different when using an SOA
backplane. In this sense, an ESB implies a certain design pattern (the backplane) for the SOA
application elements. The pattern relies on the participation of ESB software, a custom proxy
server or something similar at runtime outside of the endpoint application modules themselves.
ESBs also have inherent design-time, development-time and deployment-time implications,
because developers use the development and administration tools associated with the ESB to
create and configure SOA elements.

Microsoft's WCF is a core SOA bus, but not exactly an "ESB product," because it does not have
embedded mediation functions. However, developers can use WCF to implement the ESB
pattern by adding BizTalk Server or a third-party integration hub to mediate the communication
(this revises earlier Gartner reports that did not fully explain the distinction between the core
service bus, ESB products and the ESB pattern). Microsoft provides architectural guidance,
patterns and practices for implementing ESBs and a set of reusable BizTalk Server and .NET
components.

Background

Origins of Commercial ESB Products

Progress Software was the first to use the term "ESB" and the first vendor to ship (in 2002) a
commercial ESB product with Web services support (Sonic XQ, renamed a year later to Sonic
ESB). A few ESB-like, commercial middleware products existed prior to that time, including
Fiorano’s Tifosi, originally announced in 1998. It has evolved into Fiorano SOA Platform 2007, a
full-blown SOA infrastructure with Web services, orchestration and other modern features. It is
still actively marketed and supported. Candle’s Roma, also announced in 1998, was another
pioneering implementation of this type of product. Roma was later renamed Pathwai and then
acquired by IBM when it bought Candle. Roma implemented the essential concepts of an ESB,
including SOA communication over a messaging backbone, but it was designed prior to the
introduction of Web service standards, and it had limited adoption.

Custom-Built ESBs

A number of large companies with far-sighted architects and sufficient technical resources built
their own custom middleware backplanes during the 1990s. These generally were implemented
as a set of libraries that acted as a super-application programming interface over a MOM product,
usually IBM’'s WebSphere MQ (formerly MQSeries) or occasionally over an object request broker,
such as lona's Orbix, or a TP monitor, such as BEA's Tuxedo. Like a modern ESB, these
backplanes insulated an SOA application from some aspects of communication, policy
implementation, addressing, security, logging and correlating replies to requests. However, most
did not have a formal service registry, integration features or metadata facilities for documenting
message schemas.

After the introduction of XML in 1998 and SOAP v.1.1 in 2000, many of these custom backplanes
were extended to support the Web services standards, essentially becoming home-grown ESBs.
Some Gartner clients continue to develop custom or semi-custom ESBs and ESB-like backplanes
for themselves. Developing a custom ESB from scratch is rarely practical, for the same reasons
that developing a custom MOM or DBMS is rarely practical. Most companies do not have the
expertise, the willingness to support it for the long term or the extreme business requirements that
would make a custom ESB necessary. However, a sizable minority of companies are good
candidates for semi-custom ESBs that can be assembled from a mix of open-source components
(for example, open-source MOM, SOAP stacks and transformation engines), proprietary

Publication Date: 3 May 2007/ID Number: G00143223 Page 5of 7
© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0070

POLO00137239
POL00137239

components and some custom code. Interest in open-source SOA infrastructure is growing to

serve the needs of these companies.

RECOMMENDED READING

"Five Principles of SOA in Business and IT"
"Enterprise Service Bus Usage Scenarios and Product Categories"

"Where to Use an Enterprise Service Bus and Why"

Acronym Key and Glossary Terms
APS application platform suite

BPMS business process management suite
DBMS database management system

ESB enterprise service bus

HTTP Hypertext Transfer Protocol

ISE integrated service environment
MOM message-oriented middleware

POX plain old XML

SOA service-oriented architecture

SOAP Simple Object Access Protocol
WCF Windows Communication Foundation
WSDL Web Services Description Language
XML Extensible Markup Language

Publication Date: 3 May 2007/ID Number: G00143223

Page 6 of 7

© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

Gartner

POL-BSFF-0000026_0071

REGIONAL HEADQUARTERS

POLO00137239
POL00137239

Corporate Headquarters
56 Top Gallgnt.Read.....

Stamford, CI GRQ P
US.A. ! !

Tamesis
The Glanty
Egham
Surrey, TW20 9AW
UNITED KINGDOM

' GRO

Asia/Pacific Headquarters
Gartner Australasia Pty. Ltd.
Level 9, 141 Walker Street
North Sydney

New South Wales 2060
AUSTRALIA

Japan Headquarters
Gartner Japan Ltd.

Aobadai Hills, 6F

7-7, Aobadai, 4-chome
Meguro-ku, Tokyo 153-0042

Latin America Headquarters

Gartner do Brazil

Av. das Nagdes Unidas, 12551

World Trade Center
+S&o Paulo SP

Publication Date: 3 May 2007/ID Number: G00143223

Page 7 of 7

© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

Gartner

POL-BSFF-0000026_0072

Gartner Research

Publication Date: 13 February 2008 ID Number: G00155166

SOA Applications Should Mix Client/Server, EDA and
Conversational Patterns

Roy W. Schulte

This research clarifies the difference between client/server and event-driven architecture
(EDA) design patterns. Architects, developers and business analysts must understand
when to use each pattern to make their applications effective.

Key Findings

e A service-oriented architecture (SOA) interface may implement a client/server
interaction (typically a request/reply message pair), an EDA notification (one message)
or a conversation (a sequence of messages).

e Large SOA systems and systems of systems are multifaceted — some interfaces are
best implemented with client/server, others with EDA and a few should be
conversational.

o EDA is appropriate for time-sensitive asynchronous processing — when time is less
critical, data-centric solutions using files or databases are sufficient for asynchronous
processing.

o Within the client/server and EDA patterns, there are other important variations, including
Representational State Transfer (REST).

Recommendations

e Use SOAn all large, new composite applications and business processes to clarify the
application structure, facilitate data and code sharing, and enable incremental
maintenance and enhancements.

e Use client/server when components must collaborate to fulfill one business activity and
the flow of control is determined within the client component.

e Use EDA when components can be run asynchronously and can be minimally coupled.

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Reproduction and distribution of this publication in any form
without prior written permission is forbidden. The information contained herein has been obtained from sources believed to
be reliable. Gartner disclaims all warranties as to the accuracy, completeness or adequacy of such information. Although
Gartner's research may discuss legal issues related to the information technology business, Gartner does not provide legal
advice or services and its research should not be construed or used as such. Gartner shall have no liability for errors,
omissions or inadequacies in the information contained herein or for interpretations thereof. The opinions expressed herein
are subject to change without notice.

POLO00137239
POL00137239

POL-BSFF-0000026_0073

ANALYSIS

In 1996, when Gartner published its first reports on SOA, we described it as an implementation of
client/server and didn't mention EDA. Some architects still think only of request/reply client/server
patterns when they design new SOA applications; however, most large systems and complex
business processes have asynchronous aspects that are not well-addressed by client/server.
These aspects may be addressed through EDA. This research describes the trade-offs between
these patterns.

Client/Server

In a client/server relationship, the client component sends a request message to a server
component, which responds by performing a function. The communication model is usually
request/reply, although in rare situations, a reply isn't needed.

Client and server are roles. A component ("A") is a client because it sends a request, and another
component ("B") is a server because it responds to the request. Client/server relationships have
been common for decades, particularly for interactions between an application program and a
system utility. For example, an application invokes a print server to put a file out on a printer.
However, in SOA applications, the server performs a business application function, rather than a
system function.

One example is a client/server application that captures a customer address change from a Web
page, validates the ZIP code, then updates its local database. The mainline portion of the
application that accepts the end-user Web input is client A. It uses a client/server relationship to
invoke an SOA service supplied by component B to validate the street address against the ZIP
code. Component B could run on another computer in another department or even in another
company miles away. After receiving the reply from B, client A regains control and writes the new
address into the database.

Characteristics of client/server relationships:
e The client directs the flow of control by specifying which server to invoke and when.

e The client delegates some of its work to the server and depends on the server. A server
can, in turn, act as a client to further delegate some work to another component, and so
on.

e The client connects to the server using a find-bind-invoke sequence. The coupling is
"loose" if it works indirectly — for example, in Web services, bind and invoke are
combined into one operation.

Client/server has many variations:

e The client usually suspends work until the reply is received; however, in some cases,
the client continues working after sending a request, and the reply is returned at a later
time.

e Client/server usually relates exactly one client and one server at runtime (just as a call
statement invokes one procedure, never zero or two). Client A can have a relationship
with multiple servers in succession, and server B can serve multiple clients in
succession, but each relationship is one-to-one.

Publication Date: 13 February 2008/ID Number: G00155166 Page 2 of 7
© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0074

o However, a client request may be sent to an intermediary, which then relays it to
multiple potential servers (this is "publish/reply"). The intermediary can select one reply
(for example, the first one) to return to the client or the client may receive multiple
replies.

e Some conversational interactions can be considered types of client/server patterns,
because a component performs a function under the direction of another. However,
state is maintained in the server between messages, so it's more tightly bound than in
request/reply client/server relationships, where the server is stateless after sending the

reply.

e REST is a unique form of client/server with characteristics that are different from those
of traditional procedure calls. REST can also be used to implement EDA. (A full analysis
of REST and conversational relationships is beyond the scope of this research.)

Most developers are comfortable with client/server, because it resembles the way subroutines are
invoked in a program. However, most business situations have asynchronous aspects that are
not addressed well through client/server.

Client/Server Limitations

Consider again an address change application. A company may have a dozen or more
application systems (C through N) that maintain customer address data. (Whether it's smart to
have multiple, partially redundant databases is irrelevant; it's a common situation.) When
application A captures the address change, it must notify systems C through N. The address
change is a business event — a meaningful change in the state of something relevant to the
business.

It is possible, although intolerably clumsy, to build a client/server solution for this scenario. The
original client A would invoke an address change function in each of the other systems. Client A
calls application C, sending the new address in the request message. C returns an
acknowledgement. A then calls D with a similar request, and so forth. After a dozen client/server
interactions, systems C through N would have posted the change to their respective databases.
However, if there's a communication problem, or if any system isn't running, A must perform an
error recovery procedure. This arrangement makes A complicated and unnecessarily coupled to
systems C through N. Adding or changing a consumer application requires changing,
recompiling, retesting and redeploying A. Although it's sensible to have A depend on function B,
the ZIP code validation service, it makes no sense for A to depend on the otherwise-autonomous
applications C through N.

Batch and Polled Event Processing

The traditional way of handling this situation is to have A write the new address data to a file or
database to be picked up later by the other systems. This avoids the complexity and runtime
dependencies of a dozen client/server interactions. C through N typically update their address
records in scheduled batch jobs. However, they could be set up to poll a file or database every
few minutes or hours to pick up new addresses. The address change is a business event, so
either arrangement (batched or polling) can be described as event processing (but not EDA). If
the business can tolerate delays in transferring the updates, these data-centric, non-SOA
patterns are satisfactory.

Publication Date: 13 February 2008/ID Number: G00155166 Page 3 of 7
© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0075

EDA

If the business requires up-to-the-minute data consistency, a better solution is to disseminate the
new addresses in messages. When event data is transmitted in a message, the combination is
called an "event notification." EDA is defined as an architectural style in which one or more
components of a system execute in response to receiving one or more notifications (see "Tutorial
for EDA and How It Relates to SOA"). In our example, A through N are considered to be
components of a system of systems. System A could send one message containing a new
address to an intermediary — for example, a message-oriented middleware (MOM) product —
that delivers it to 12 consumers, systems C through N. The relationship between A and B is
client/server, and the relationships between A and C through N are EDA.

Like client/server, and unlike file and database solutions, EDA is built on program-to-program
communication. EDA event consumers are somewhat similar to client/server clients, and EDA
event sources are somewhat similar to client/server servers, but with some key differences:

e EDA notifications are pushed by the event source, not pulled by the event consumer.
The event source determines when the message is sent. An event consumer cannot
predict when it will receive a notification, so it must be implemented with an event-
capable, asynchronous communication mechanism. By contrast, client/server clients
typically use synchronous procedure calls.

e An event consumer doesn't pass parameters to an event source. The consumer does
not know what the event source is doing; it only knows that the source will emit a
notification when an event occurs. By contrast, client/server clients send a document or
other parameter set to the service provider to convey instructions related to the current
instance of work (for example, client A passes each new customer address to server B).

e Event sources do not depend on event consumers. If all consumers stop running, the
source still runs. The events that it emits can be dropped, or MOM can save them in a
queue for delivery at a later time, if the business requires it. By contrast, a client/server
server will not run unless it has been invoked by a client.

EDA minimally couples the source and consumer, and makes it easy to modify them
independently. As long as the notification message stays the same and the change is compatible
with the business requirements, a developer can change or add event consumers without
changing the source component. Similarly, the event source can be changed without changing
the consumer(s), as long as the source emits the same notifications, and the logic of the business
process is not impaired. In some cases, the person developing an event source may assume that
a downstream event consumer will perform certain activities in a business process, but there's
nothing in the notification message or software interface that makes this explicit or "hard wired."

EDA has numerous variations:

e Each notification is typically available to multiple event consumers (a one-to-many
relationship). The source may emit ("publish") a notification, and a subscription manager
in a middleware intermediary may deliver a copy to all consumers who have registered
an interest in (have "subscribed to") that type of notification.

e However, EDA can also be implemented with direct, one-to-one communication. EDA
doesn't need to use publish-and-subscribe, although it's valuable when there are
multiple sources and consumers or they change frequently.

e A sophisticated event consumer can analyze multiple incoming notifications using rules
to detect patterns that indicate situations of interest to the business. This type of

Publication Date: 13 February 2008/ID Number: G00155166 Page 4 of 7
© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0076

computing, called complex-event processing (CEP), is the basis for business activity
monitoring and similar applications. (The topic of CEP is beyond the scope of this
research.)

Using Middleware

EDA and client/server can be implemented with or without a middleware intermediary. If the EDA
or client/server application is simple, plain protocols — such as HTTP or SOAP/HTTP (Web
services) — without middleware may be sufficient. However, if the relationship or communication
patterns are complex, it's generally better to use off-the-shelf middleware, rather than coding
equivalent features by hand in the application components. For example, MOM is a natural fit for
EDA, because most MOM products support publish/subscribe, point-to-point communication and
persistent queuing. However, the use of MOM does not define EDA. With enough effort, these
functions could be built into the event source and consumer.

MOM can also be used to implement request/reply client/server relationships, which is a relatively
common practice (although most client/server uses alternative communication mechanisms,
rather than MOM). Other intermediaries, such as enterprise service buses, integration brokers
and business process management tools, may also be useful for client/server, EDA and mixed
applications that require address redirection, transformation, content-based routing or process
management.

When to Use Client/Server or EDA

Architects, analysts and software engineers make many decisions when designing SOA
applications. For example, they must decide whether to put a function, such as ZIP code
validation, in a separate component (B) or embed it in the main line (A). They must also decide
whether an application system (A) should be combined with one or more of the other application
systems (C through N).

In our example, component B (ZIP code validation) is a sensible SOA service, because:

e |t has a reasonable granularity, can be isolated from other parts of procedure A and an
interface can be clearly defined

e There may be a desire to host B on a different computer, perhaps owned and operated
by a business unit other than the one that hosts A

e Function B may be shared by multiple, disparate consumer applications

Similarly, the purpose of application A in our example is sufficiently distinct from that of C through
N, so that each should be deployed as its own system. For each relationship and interface in this
system of systems, developers had to select between client/server and EDA.

The client/server pattern is appropriate for relationships like that between A and B when:
e The server (B) performs a subset of a larger activity controlled by the client (A)

e The client depends on the server to perform a function and cannot finish its work without
the server's reply

e The server requires input instructions (in this case, address data) from the client to know
what to do

The EDA pattern is appropriate in relationships where the components (in this example, whole
application systems A and C through N) are largely autonomous:

Publication Date: 13 February 2008/ID Number: G00155166 Page 5 of 7
© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0077

e The event source reacts to external stimuli (in this case, end-user input regarding new
addresses), rather than instructions from downstream consumers

¢ The only commonality among the components is an interest in data about the same
event (the address change)

Although our example is simplistic, it represents real-world scenarios in critical ways.
Client/server and EDA are complementary, and they should be used to address different aspects
of work in a system or in a system of systems. In most projects, client/server relationships will
outnumber EDA relationships. Client/server tends to apply to one application system, although it
is also used among separate systems for interactive, composite applications (using wrappers for
legacy systems where necessary). EDA relationships often apply to coarser-grained
relationships, such as those between separate application systems and separate companies,
although EDA is also used in applications for fine-grained, asynchronous, minimally coupled
processing.

RECOMMENDED READING

"Tutorial for EDA and How It Relates to SOA"
"Advanced SOA for Advanced Enterprise Projects”

"Understanding and Applying the Design Differences Between WS-* Based Architecture and
Web-Oriented Architecture”

"Applying WS-* Based Web Services and WOA Standards to Enterprise Application-to-
Application Interoperability Challenges"

Acronym Key and Glossary Terms
CEP complex-event processing

EDA event-driven architecture

MOM message-oriented middleware
REST Representational State Transfer

SOA service-oriented architecture

Publication Date: 13 February 2008/ID Number: G00155166 Page 6 of 7
© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0078

REGIONAL HEADQUARTERS

Corporate Headquarters
56 Top Gallant Road

European Headquarters
Tamesis

The Glanty

Egham

Surrey, TW20 9AW
UNITED KINGDOM

.............................. M

i "GRO i

Asia/Pacific Headquarters
Gartner Australasia Pty. Ltd.
Level 9, 141 Walker Street
North Sydney

New South Wales 2060
AUSTRALIA

Japan Heaaquarets
Gartner Japan Ltd.

Aobadai Hills, 6F

7-7, Aobadai, 4-chome
Meguro-ku, Tokyo 153-0042

Latin America Headquarters
Gartner do Brazil

Av. das Nagdes Unidas, 12551
9° andar—World Trade Center
04578-903—Sé&o0 Paulo SP
BRAZIL

Publication Date: 13 February 2008/ID Number: G00155166

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0079

Gartner Research

Publication Date: 3 May 2007 ID Number: G00143292

Where to Use an Enterprise Service Bus and Why
Roy W. Schuite

This research describes the features and functions of an enterprise service bus (ESB)
and compares and contrasts them with other forms of middleware and basic
communication protocols. Architects and developers who are building service-oriented
architecture (SOA) applications should understand ESBs so that they know where to use
them and where they are unnecessary.

Key Findings

e For most new SOA projects, the choice of communication infrastructure now comes
down to using simple Web service stacks, plain old XML (POX) on HTTP or an ESB.

e ESBs improve the quality of program-to-program communication, make it easier to
share SOA services and make service versioning and changes to SOA interfaces easier
to implement.

e ESBs are often used to present portions of legacy and purchased non-SOA applications
as SOA services. However, ESBs are also relevant in large-scale or long-living SOA
service domains where there are no legacy non-SOA applications.

e Since their inception, ESBs helped enable the separation of communication and
integration logic from the application business logic. This approach is now being
expanded to include more policy-related issues regarding security, choice of protocols
and quality of service.

Recommendations

e Avoid hard-coding the identity (for example, the uniform resource indicator [URI]) of the
service providers into the consumers in any large, evolving SOA system.

e Use an ESB to offload communication and integration functions from the consumer and
provider elements in all large domains (more than 20 services) so that composite SOA
applications and business processes can be modified more quickly and easily.

e There is no need for an ESB in simple, small (fewer than 20 services) SOA applications,
particularly where all the interactions are request/reply, interfaces are slow to change,
there is no integration with packaged or legacy applications, and the whole application is
built by one disciplined development team.

© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Reproduction and distribution of this publication in any form
without prior written permission is forbidden. The information contained herein has been obtained from sources believed to
be reliable. Gartner disclaims all warranties as to the accuracy, completeness or adequacy of such information. Although
Gartner's research may discuss legal issues related to the information technology business, Gartner does not provide legal
advice or services and its research should not be construed or used as such. Gartner shall have no liability for errors,
omissions or inadequacies in the information contained herein or for interpretations thereof. The opinions expressed herein
are subject to change without notice.

POLO00137239
POL00137239

POL-BSFF-0000026_0080

ANALYSIS

An ESB is a communication and mediation layer that connects service consumers and service
providers in SOA scenarios and situations that mix SOA and other architecture styles. However,
not all SOA scenarios require an ESB. Good SOA applications have been built since the 1990s
without ESBs, and many, especially prior to 2002, did not even use the Web or Web services.
SOA can be implemented with many different technologies — a choice with a long history (see
“Middleware for Service-Oriented Architectures”).

A few SOA applications are still being implemented on object request brokers (ORBSs),
transaction processing (TP) monitors and message-oriented middleware (MOM), but for most
developers, the choice now comes down to using simple Web services (SOAP on HTTP), POX or
an ESB. The first two of these, SOAP and POX, are widely available and free, bundled into Web
servers, application servers, portal products and operating systems. ESB technology is available
not only in products called ESBs, but also embedded in other types of SOA infrastructure
products (see "The Enterprise Service Bus: Communication Backbone for SOA").

To understand where ESBs should be used, architects should consider four issues:
e Multiple communication patterns
e Intelligent addressing, routing and orchestration
e Mediation

e Complementing application platforms

Multiple Communication Patterns
ESBs are useful where the applications will use a mix of communication patterns:
e All ESBs support one-way messages and two-way request/reply exchanges.

e Almost all ESBs also support message queuing (store-and-forward) and publish-and-
subscribe (pub/sub).

If the applications will only use request/reply, then plain HTTP or a simple SOAP stack may be
sufficient (unless other ESB features are needed). However, HTTP does not supply reliable
messaging, queuing or pub/sub, although a limited form of pub/sub is available in protocols such
as RSS and Atom. SOAP stacks (outside of ESBs) are beginning to support WS-Reliable
Messaging (delivery confirmation for one-way messages), but SOAP standards do not cover
queuing, and SOAP-based pub/sub specifications (such as WS-EventNotification) are still being
debated. MOM can support all the communication patterns offered by ESBs (indeed, virtually all
ESBs embed MOM), but plain MOM lacks other features helpful for SOA and is less aligned with
industry standards.

An ESB may also move files, database records and other types of data used in non-SOA
communication. Many ESBs are adding explicit support for Representational State Transfer
(REST) and conversational communication. Microsoft's Windows Communication Foundation
(WCF) and the Service Component Architecture (SCA), a new design approach promoted by the
Open SOA Collaboration (www.osoa.org), include REST and conversations in their
specifications. Many ESB vendors have pledged to support SCA (see "Service Component
Architecture Is a Winner in the Quest to Establish a Common Notation for SOA").

Publication Date: 3 May 2007/ID Number: G00143292 Page 2 of 7
© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0081

Intelligent Addressing, Routing and Orchestration

ESBs offload some addressing, routing and orchestration tasks from the application, enabling the
consumer and provider elements to be simpler. Communication paths are “soft wired” into the
ESB, where they can be changed at deployment or runtime, rather than being “hard wired” into
the application code at development time. There are three aspects to this:

e Service virtualization — ESBs bind each service consumer with a suitable service
provider at runtime. ESBs use a name space or registry, whether embedded or external,
to resolve the service reference to a specific implementation (element). The registry may
be based on UDDI, or it may be entirely proprietary. All ESBs make it simple to
substitute an alternate provider at deployment time, and most also enable runtime
substitution. The developer of the consumer does not have to know the URI of the
provider, because the ESB redirects the request, for example, by using a service
identifier as an alias.

¢ Rule-based routing — Most ESBs support content-based routing. Routing rules may
be written in JavaScript, XPath or a third-generation language, or they may be specified
with a graphical development tool (which may generate XPath or another language).
Many ESBs also use topic names, message properties or queue names to direct
asynchronous, one-way messages (often leveraging MOM features built into the ESB).

e Orchestration — Most ESB products have a facility that orchestrates the flow of a
composite SOA application or a multistep business process. The sequence of the
services to be executed and conditional routing rules are usually specified through a
graphical tool. The flow can be reconfigured with few or no changes in the consumers.
Some early ESBs did not have orchestration (it is not definitional to an ESB), but most
commercial ESBs now do, as a standard feature or an extra-cost option. Orchestration
may be implemented in an ESB hub (for example, in a BPEL server), in distributed
adapters (for example, as itinerary-based routing) or both.

HTTP, plain SOAP, TP monitors, ORBs and MOM do not have intelligent routing or orchestration
capabilities. Aside from ESBs, only integration tools, such as programmatic integration servers,
integration brokers and similar products, have this. Any large, continuously evolving SOA system
should avoid hard-wiring the identity (for example, URI) of the service providers in the consumers.
A number of companies have coded their own simple mechanism for virtualizing service
identifiers so that they do not use an ESB for this purpose, but few companies build their own
rule-based routing or orchestration tools.

Mediation

ESBs move messages between SOA elements so ESBs are in an ideal position to modify the
messages or otherwise add value as the messages pass through. By definition, an ESB must
have a mechanism that enables mediation to be performed, although an ESB is not required to
supply any particular mediation functions. Examples of common mediation functions include:

¢ Message validation
e Transformation

e Protocol bridging (for example where one element uses SOAP v 1.1 and another uses
SOAP v.1.2 or a MOM)

e Message logging and auditing

Publication Date: 3 May 2007/ID Number: G00143292 Page 3 of 7
© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0082

e Security, including authentication and authorization
e Service virtualization, rule-based routing and orchestration

Many of these functions require reading the message contents, which is why ESBs must support
typed messages (the message attributes are explicitly documented). Most ESBs have
development-time tools that read WSDL files and XML Schema Definitions and then generate
metadata used by the ESB at runtime. Many ESBs can also import metadata from database
catalogs and other sources. A full repository is not part of an ESB and is not necessary for the
ESB at runtime, but companies engaged in large-scale SOA programs should have one (see
"When to Use Metadata Repositories, Registries or Both").

Transformation is particularly important because it makes it easier to change services and
interfaces. A new version of a service with additional functions can be installed and used by new
consumers without disrupting consumers of the previous interface, because the ESB can
transform the new messages into the older formats that have the message attributes used by
earlier consumers.

Basic protocols, such as HTTP and SOAP, and traditional middleware, including ORBs, TP
monitors and MOM, have no mediation capabilities — they pass messages through unchanged.
A developer can write a custom wrapper or manually insert a proxy server in the middle of a
message flow to intercept and mediate a message, but it would not be a native part of the
communication infrastructure as it is with an ESB, integration suite and certain other integration
tools.

Complementing Application Platforms

Many ESBs support certain functions that are also performed by high-end application servers and
TP monitors, particularly:

e Load balancing
e Failover
e Transaction management

The ESB implements load balancing and failover by rerouting messages to an alternative server.
This could potentially involve dissimilar application servers, although, in practice, load balancing
and failover almost always use the same server technology, because the alternative service
provider element must be interchangeable with the original. Transaction management includes
synchronizing with other resource managers, such as database management systems (DBMSs).

Projects that have made a prior decision to use a high-end (for example, JEE) application server
can get these functions from their application server or optionally from an ESB. However, an ESB
may affect the choice of platform because it also supplies these functions to a simple Java
Standard Edition platform or a plain operating system process, potentially making the high-end
application server unnecessary in situations where the only motivation for the high-end platform
was scalability or reliability.

Some types of SOA infrastructure products include ESBs and application servers. Even some
commercial products originally called "ESBs" now have their own limited or full-blown application
server, going beyond the original understanding of an ESB to become a larger form of SOA
infrastructure. In this type of product, the embedded application server can be the container (host
environment) for the service provider elements, while the ESB aspects are used to connect into
external application servers that host other services(see "Enterprise Service Bus Usage
Scenarios and Product Categories").

Publication Date: 3 May 2007/ID Number: G00143292 Page 4 of 7
© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0083

Role of an ESB

The role of an ESB is roughly analogous to the role of a DBMS, although ESBs do program-to-
program communication, whereas DBMSs support program-to-database interactions. DBMSs
offload data management tasks from the application by performing data navigation (such as
joins), transactional integrity, concurrency control, backup, recovery, load balancing, caching and
other functions, thereby improving the overall quality of data management. DBMSs also make it
practical to share data among multiple applications. Occasional changes in data models are
easier to implement. Similarly, ESBs improve the quality of program-to-program communication,
make it easier to share SOA services among multiple consumer applications and make
occasional changes to SOA interfaces easier to implement. To the extent that these capabilities
were previously coded into the application, an ESB (such as a DBMS) simplifies application
development. However, most applications simply existed without these features in the past, so
the ESB's value in flexibility and quality is more notable than the savings in application code.

Since their inception, ESBs have encouraged the separation of communication and integration
logic from business logic. This principle is now being applied more extensively as ESBs begin to
implement the new SCA and WCF models for SOA architecture. The goal is to abstract policy-
related issues by expressing them declaratively at development time and postponing the
implementation of the choices to deployment or runtime. This applies specifically to policies
regarding security, choice of protocols and quality of service. This evolution (and SCA and WCF
in general) involves not only the ESB, but SOA application design practices and SOA
development tools.

Where to Use an ESB

Large (more than 20 services), demanding or frequently modified SOA applications benefit most
from ESBs. The factors that tend to promote the use of an ESB include:

e Business requirements that call for a mix of protocols and communication patterns,
including request/reply, one-way messages, message queuing and pub/sub

e Applications composed of elements that run on a mix of heterogeneous application
servers and operating systems, requiring compatibility across platforms or protocol
conversion

e Processes that change fairly frequently, or those with complex routing rules where
business analysts want to change the flow without changing the consumers or service
providers

e SOA scenarios where consumer or service provider elements are added, modified or
moved fairly often

e Applications with more than 20 SOA services, because they are likely to change often
e Integration scenarios involving packaged and legacy applications

ESBs are often used to present portions of legacy and purchased non-SOA applications as SOA
services. Developers do not have to write a custom wrapper or design a proxy server because
those functions are implemented within the ESB, its adapters or servers that are plugged into the
ESB. However ESBs are not just applicable to these classical integration scenarios. Any large-
scale or long-living set of SOA services is an appropriate target for an ESB because of the
“organic” nature of SOA. New business processes, consumers and providers are frequently
added, and older ones are periodically modified or retired. The ability of an ESB to simplify

Publication Date: 3 May 2007/ID Number: G00143292 Page 50f 7
© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0084

ongoing changes in interfaces and processes is relevant, even where there are no legacy non-
SOA applications.

Versioning is a major challenge in the operation of an SOA service domain, so the ability of an
ESB to transform messages can be a key benefit. In the future, there will be fewer legacy non-
SOA applications, but more legacy SOA services, so there will be less need for technical
gateways, but an ongoing need for the other mediations that ESBs offer.

An ESB is overkill for small, simple, static SOA applications, particularly where:

e All the communication is request/reply or “best efforts” one-way messages (delivery
need not be ensured).

e Navigation and routing logic is simple and can be embedded in the consumers.
e There are relatively few services (fewer than 20).
e Consumers and services do not change often.

e All the applications are designed by one team or closely cooperating teams that
exchange metadata and agree on consistent interface definitions.

SOA proof-of-concept projects and other SOA applications with a limited scope and life span
generally do not need an ESB.

RECOMMENDED READING

“Middleware for Service-Oriented Architectures”

"Service Component Architecture Is a Winner in the Quest to Establish a Common Notation for
SOA"

"When to Use Metadata Repositories, Registries or Both"
"The Enterprise Service Bus: Communication Backbone for SOA"

"Enterprise Service Bus Usage Scenarios and Product Categories"

Acronym Key and Glossary Terms

BPEL Business Process Execution Language
DBMS database management system

ESB enterprise service bus

HTTP Hypertext Transfer Protocol

MOM message-oriented middleware

ORB object request broker

POX plain old XML

REST Representational State Transfer

RSS Really Simple Syndication

SCA Service Component Architecture

Publication Date: 3 May 2007/ID Number: G00143292 Page 6 of 7

© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0085

POLO00137239
POL00137239

SOA service-oriented architecture

SOAP Simple Object Access Protocol

TP transaction processing

UDDI Universal Description, Discovery and Integration
URI Uniform Resource Identifier

WCF Windows Communication Foundation

WSDL Web Services Description Language

XML Extensible Markup Language

REGIONAL HEADQUARTERS

Corporate Headquarters

European Headquarters
Tamesis

The Glanty

Egham

Surrey, TW20 9AW
UNITED KINGDOM

Asia/Pacific Headquarters
Gartner Australasia Pty. Ltd.
Level 9, 141 Walker Street
North Sydney

New South Wales 2060
AUSTRALIA .. .

. GRO |

Japan Headquarters
Gartner Japan Ltd.

Aobadai Hills, 6F

7-7, Aobadai, 4-chome
Meguro-ku, Tokyo 153-0042
JAPAN

Latin America Headquarters
Gartner do Brazil

Av. das Nagdes Unidas, 12551
_.9° andar—World Trade Center

S&o Paulo SP

Publication Date: 3 May 2007/ID Number: G00143292 Page 7 of 7
© 2007 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026_0086

Gartner Research

Publication Date: 17 July 2008 ID Number: G00149891

Best Practice for Software Architecture: Intermediation
Yefim V. Natis

Intermediation in the design of business applications means that software elements
(clients, service implementations and event handlers) interact indirectly, through
intermediaries. The resulting improvement in manageability and extensibility can make
business applications more durable, scalable and agile. However, achieving this means
learning new skills in architecture and programming, and sometimes using new tools —
a potentially costly first step.

Key Findings

e Business systems designed with intermediation are more agile, thus will last longer and
enable greater extensibility, scalability and innovation.

e Software scenarios that require tight coupling between software elements for atomistic
or other reasons generally shouldn't use intermediation.

e Most interactions, especially under the service-oriented architecture (SOA) model, can
be intermediated, and the IT environment likely will benefit.

e Most IT organizations have the technical means for intermediated communications
(queuing and publish-and-subscribe [pub-sub], distributed caching, enterprise service
bus [ESB] and other middleware). Therefore, intermediation is available to most projects
at the early planning stages or at the programming stage.

Recommendations
e Software designers should use intermediation for most business systems.

e [T managers should ensure proper training in intermediated communications for IT
architects, project leaders and engineering staff.

e Technology evaluators should include intermediation support in selection criteria for
platforms, tools, packaged applications and software-as-a-service (SaaS) contracts.

e |T planners and architects should invest in understanding the advantages and limitations
of intermediation to avoid underpowering their systems or overstretching middleware by
making wrong choices.

e |t organizations with little or no experience in intermediation should plan the
experimental use of intermediation in a less-critical, real-world project, such as a pilot
program.

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Reproduction and distribution of this publication in any form
without prior written permission is forbidden. The information contained herein has been obtained from sources believed to
be reliable. Gartner disclaims all warranties as to the accuracy, completeness or adequacy of such information. Although
Gartner's research may discuss legal issues related to the information technology business, Gartner does not provide legal
advice or services and its research should not be construed or used as such. Gartner shall have no liability for errors,
omissions or inadequacies in the information contained herein or for interpretations thereof. The opinions expressed herein
are subject to change without notice.

POLO00137239
POL00137239

POL-BSFF-0000026_0087

STRATEGIC PLANNING ASSUMPTION(S)

Through 2013, intermediation as a core design principle will result in applications of the best
scalability, extensibility and longevity in the software industry.

ANALYSIS

A fundamental effect of SOA is the partitioning of business application software into smaller
building blocks: services, event handlers or similar software elements. In most cases, interactions
among services and between clients and services are in the form of direct request/reply.
However, industry experience shows that intermediated (indirect) communication among software
elements can deliver substantially more benefits than the traditional direct communication. Only
advanced software architecture teams can deploy intermediate communication as the core
architecture of their applications. As the demand for the high-end characteristics of SOA
applications reaches the mainstream, intermediated communication likely will become a
mainstream best practice of advanced SOA.

The difference between direct and indirect communication is:

¢ Direct communication is communication where the requestor (A) makes a direct call to
the service (B) by its name or alias.

e Indirect (intermediated) communication is when the originator (A) does not name or
attempt to contact the target (B) but communicates with an intermediate third party (X)
— a queue, a middleware product, a caching mechanism, a database or another
software intermediary. It becomes the job of the intermediary to identify and contact the
target (B), or (in simpler scenarios) the target may be actively polling the intermediary for
work requests.

All software is multilayered, and modularity and interconnectivity exist (largely independently) at
each level. This research is exclusively about the design of business applications. The
communicating software elements in this example are SOA services and clients, event-driven
architecture (EDA) event handlers and the like. Thus, the intermediaries are directly visible and
addressable by the business software (a queue, a middleware product's application programming
interface [API], such as an ESB, a caching mechanism, a database or another software
intermediary). It is possible that what is, for example, direct communication at the application level
is implemented at the level below through the intermediated model (messaging or similar), but
this fact is unknown at the application level and, therefore, is of no concern. Mixing the levels
when considering these matters will create confusion (see Note 1).

The choice to use intermediation in a software system can be made at the early stage of
application design and planning or at the later time of programming.

e Early decision, in this respect, ensures greater consistency at programming time and
greater cohesiveness among the different stages of application planning and the
development processes.

e Late decision has limited scope and can result in the same project ending up with
multiple models and technologies of intermediation chosen by different technical
contributors.

Regardless of the stage that intermediation is considered, a specific intermediary must be
established for all software or design elements. This choice is best-informed if multiple scenarios

Publication Date: 17 July 2008/ID Number: G00149891 Page 2 of 8
© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0088

are considered. When a programmer chooses an intermediary, the program typically is aware
only of the requirements of his or her part of the larger project. For all these reasons, we
recommend that the decision to use intermediation and its specific rendition be made by software
architects based on the specifics of the business design of the application. Thus, application
software architects should be the key intermediation experts in the IT organization.

The Scenarios of Intermediation

Simple intermediation begins with putting a simple intermediary (a queue or another) between the
two communicating software elements. However, advanced scenarios include clustering,
consolidation, extension and the all-inclusive brokered intermediation, and can engage a large
number of participating software elements (see Figure 1).

Figure 1. Use Scenarios for Application-Level Intermediation

Simple
Intermediation

Consolidation

Brokered
Intermediation

Source: Gartner (July 2008)

Publication Date: 17 July 2008/ID Number: G00149891 Page 30f8
© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gart“er

POLO00137239
POL00137239

POL-BSFF-0000026_0089

Advanced scenarios require an "intelligent" intermediary (a middleware product, such as an ESB
or another form of integration broker) to manage the passing messages and to apply processing
rules. Some more-advanced intermediaries also may be context-aware. This variety of add-on
intelligence, and the potential power of intermediation, is a direct result of decoupling the software
elements in intermediated communications. These are the typical use scenarios for intermediate
communication:

Simple intermediation: A gives the input data to the intermediary, and B gets it from the
intermediary. The same result can be accomplished by a one-way request-reply with a
greater degree of coupling between A and B.

Parallel clustering: Multiple instances of B are begun to take work from the intermediary
and process it in several parallel streams to maintain the service-level agreement's
(SLA's) response time by increasing the system's throughput.

Consolidation: B processes requests from multiple related sources, consolidating
processing and improving resource use for relatively infrequent requests.

Extension: A new service (C) is added to process the request, enabling an unintrusive
extension of the application's functionality. Monitoring functionality, including business
activity monitoring (BAM), is a great beneficiary of this scenario. This requires an
intelligent intermediary; simple intermediary storage will not do, because the multiple
targets and passing messages must be managed.

Brokered intermediation: Multiple scenarios are combined in one intermediation
environment. Multiple requests and services are interconnected and managed via an
intermediation broker. Business rules can be added to the broker to add value to the
incoming requests before forwarding them to the appropriate targets. Advanced brokers
may also be context-aware. This, too, requires an intelligent intermediary, because
management and brokering require the processing of rules and other logic.

The Benefits of Intermediation

The indirect decoupled nature of intermediated communication is the cause of its distinct benefits:

The intermediary keeps track of messages that are passing through, enabling tracking,
interception, management and post-transaction analysis.

The originator is not blocked while the service executes, nor is it dependent on whether
the service is available to execute at the time when the request is issued.

The intermediary, by its nature, enables centralized control, including dynamic
optimization of traffic by manipulating priorities and resource allocations for different
channels, depending on configuration and context.

Load balancing, clustering and fault tolerance are natural attributes of intermediated
communication when an "intelligent" intermediary is present.

Extensibility by simply adding new services (listeners) to the process in a new way;
some recognized requests can be unintrusive for applications and transactions.

Extensibility by adding more points of origination of already recognized requests can be
entirely unintrusive for applications and transactions.

Version control and multiversion coexistence can be accomplished by configuring the
intermediary.

Publication Date: 17 July 2008/ID Number: G00149891 Page 4 of 8

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0090

Complexity is reduced from many-to-many connections and transformations to a pair of
many-to-one and one-to-many. Opportunities arise to establish canonical formats to
further reduce redundancy and complexity.

Automatic fault resilience can be achieved by redirecting affected traffic in real time.

Automatic support of heterogeneity can be added via intermediary switching protocols,
access models and data types.

Additional processing in the intermediary (security, business intelligence, monitoring,
pattern matching and context injection) can add value.

Redundant services supported by multiple providers (such as e-mail or fax) can be
consolidated.

An intermediary can establish configurable policies to select from among similar
services offered from different providers, depending on the required SLA, price or other
criteria — in real time.

There is an opportunity for parallel processing, including support for multiprocessor
computing grids. (This capability can be a foundation for massive improvements in
performance and is built into the leading online transaction processing and extreme
transaction processing engines and into EDA platforms [EDAPs]).

The Limitations of Intermediation

The indirect nature of intermediation also causes its limitations:

Intermediation prevents tightly coupled transactional behavior. As a result, the traditional
atomistic distributed transactions that occur via two-phase commit protocols are not
possible. Error recovery in some distributed transactions may require compensating
transactions — a weaker form of integrity protection.

Request-reply interactions must be replaced with a "round trip" of decoupled
intermediated interactions that are paired and coordinated by an intelligent intermediary.

For users who are familiar only with the direct request/reply interaction model, additional
programming using a less familiar programming model is required to interact with the
intermediary.

Insufficient standards typically lock in the application to the initially chosen intermediary.

Maintenance (pruning) of a simple intermediary is required to prevent accumulation of
"dead" requests.

The intelligent intermediary is a separate middleware product and can be expensive to
acquire, maintain and use, requiring staff training.

Problems with the intermediary (for example, poor performance and technical failures)
can affect the entire environment and a large number of services and applications.

A shortage of productivity tools dedicated to the intermediated model of communication
requires additional training.

Publication Date: 17 July 2008/ID Number: G00149891 Page 50f8

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0091

Intermediation by Point-to-Point Message Queuing

The simplest form of intermediation is by program A writing a message to a named queue, while
program B arranges to be notified when a new record is written to the queue or periodically
retrieves the messages (if any) from the queue. This is simple intermediation, and any added
logic would have to be in the software that posts and retrieves the message from the queue.
Some queues are deployed in real memory to improve performance. Some queues offer
automatic destructive read (the message is read only once and then is removed from the queue).
Some queues can participate in standard, two-phase commit transactions to ensure message
delivery and its integrity.

Intermediation by Pub-Sub

Pub-sub is an advanced form of intermediation. Program A posts a message of a stated type
("topic") to the pub-sub broker (intelligent intermediary). Any number of programs (B, C and so
on) can indicate to the intermediary that they require notification when a new message of the
named topic is posted (subscription). Thus, not only can the originally intended services be
exposed to the topic, but services can be added, without intrusion on the running software.
Moreover, new originators can be added and old ones removed while subscriber(s) continue to
operate unchanged. BAM is most powerful in an environment where business interactions are
driven by pub-sub architecture by adding listening services to all relevant topics. Many
innovations and extensions are possible in the pub-sub environment.

Other Means of Intermediation

Queues and pub-sub brokers are the most popular but not the only means of intermediation.
Shared memory, especially advanced distributed caching platforms, can be used for this purpose,
as can databases and file systems. Choosing the most appropriate means of intermediation
depends on the costs (in budget, effort and skills), the desired levels of simplicity and the required
levels of integrity and performance.

SOA and Intermediation

Basic SOA typically is seen as the directly interactive architecture (and is reflected as such in the
architecture of Web Services Description Language [WSDL], Web services, Java API for XML
Web services and other core SOA specifications). Most SOA applications are implemented
without intermediation: A invokes B by a direct-interface call. Advanced SOA includes other
interaction models, notably the event-driven SOA style (EDA), which, in turn, typically is
intermediated.

EDA and Intermediation

EDA is concerned with the processing of events. Generally, event objects can be passed to
software elements using any method of communication. However, the nature of event origination
favors the decoupled architecture of asynchronous and intermediated communication. The vast
majority of EDA is implemented using intermediation (via queuing or pub-sub intermediaries).

Intermediation often is deployed in event processing, but it is not equivalent to it. In many
examples of intermediation, the messages that pass through the intermediary are not event
objects, and some event objects are communicated directly. Thus, not all event processing is
intermediated, and not all intermediated communication conveys events. You don't have to
master event processing to use intermediation.

Publication Date: 17 July 2008/ID Number: G00149891 Page 6 of 8

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0092

Vendors and Products for Intermediated Communication
Architecture

As mentioned, many middleware and platform product categories supply enabling technologies
for intermediated communication. These include:

e Specialist queuing and pub-sub products include Apache ActiveMQ (open source),
FioranoMQ, IBM WebSphere MQ, Microsoft Message Queuing and Tibco Rendezvous.

e Java Platform, Enterprise Edition (Java EE) implementations include Java Messaging
Service, which has queuing and pub-sub capabilities. These include the IBM
WebSphere Application Server, Oracle WebLogic Server, Red Hat JBoss Enterprise
Application Platform, SAP NetWeaver and Sun Microsystems GlassFish Enterprise
Server.

e Distributed caching platforms include Alachisoft's NCache, GemStone Systems'
GempFire, GigaSpaces Technologies' XAP Enterprise Data Grid, IBM's WebSphere
eXtreme Scale, Oracle Coherence, Red Hat JBoss' JCache and Terracotta's Terracotta
Server. Several other notable offerings are under development and cannot yet be listed.

Most users have access to some (often multiple) of these technologies and are technically
equipped for intermediated communication. We recommend that, after examining the advantages
and challenges of this approach, users include intermediation on their shortlists of best practices
for modern software design.

RECOMMENDED READING

"How to Get Started With Event Processing"

"Tutorial for EDA and How It Relates to SOA"

"Key Issues for SOA, EDA and WOA, 2008"

"SOA Applications Should Mix Client/Server, EDA and Conversational Patterns"

Note 1
Implicit vs. Explicit Intermediation

This research covers only the explicit form of intermediation. This is when the intermediary is
visible to the application software elements (services, clients, event sources, handlers and
others). In explicit intermediation, the source communicates with the intermediary without
knowing the ultimate destination of its data (message). Thus, the intermediary is a software
element that acts as a value-added pass-through or a broker but never as the final destination. It
fully decouples the source and the destination, because both are aware only of the intermediary.
The intermediary is shared by many application elements (source or target); it does not have a
purpose, other than to facilitate and enrich communication.

In implicit intermediation, the application element addresses another application element directly,
but the underlying middleware that delivers the message at runtime uses an internal intermediary
to facilitate the communication. At the application design level, this is a direct communication:
Only the source and the target are visible (A calls B). At runtime, middleware implements the
communication via a lower-level intermediary (Oracle Tuxedo is implemented this way, and most
message-oriented middleware and ESB products support direct interaction at the application level
using implicit intermediation "under the covers").

Publication Date: 17 July 2008/ID Number: G00149891 Page 7 of 8

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0093

The same intermediary can be used in both patterns. An ESB can be addressed as an
intermediary via its APIs to post an event or to put an item on a queue. An ESB also can be used
as a covert underlying implementation to what was designed at the application level as direct
communication. A queuing system also can be addressed directly by the application logic (as an
explicit intermediary), or the same queuing system can be used internally by runtime middleware
to facilitate what was designed to be a direct communication at the application level.

Implicit intermediation delivers some of the same benefits as explicit intermediation (greater
scalability, fault tolerance and manageability), without some of the costs (learning a new
programming model). Implicit intermediation is a progressive step, as compared with fully coupled
direct connections. However, explicit intermediation is the most powerful form of this architecture,
offering not only performance improvements but also added flexibility and extensibility in design
and a long-term evolution of the applications.

REGIONAL HEADQUARTERS

Corporate Headquarters

U.S.A.

European Headquarters
Tamesis

The Glanty

Egham

Surrey, TW20 9AW
HNITED_KINGROM,

i GRO i

Asia/Pacific Headquarters
Gartner Australasia Pty. Ltd.
Level 9, 141 Walker Street
North Sydney

New South Wales 2060
AUSTRALIA

Japan Headquarters
Gartner Japan Ltd.

Aobadai Hills, 6F

7-7, Aobadai, 4-chome
Meguro-ku, Tokyo 153-0042

Latin America Headquarters

Gartner do Brazil

Av. das Nagdes Unidas, 12551
9° andar—World Trade Center

Publication Date: 17 July 2008/ID Number: G00149891

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0094

Gartner Research

Publication Date: 25 March 2008 ID Number: G00155743

Open Source in ESB Suites, 2008

Jess Thompson

The use of open-source enterprise service bus technology is widespread, and Gartner
expects this to grow. However, its use must be supplemented with other technologies to
provide the manageability, reliability and security demanded by production
environments.

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Reproduction and distribution of this publication in any form
without prior written permission is forbidden. The information contained herein has been obtained from sources believed to
be reliable. Gartner disclaims all warranties as to the accuracy, completeness or adequacy of such information. Although
Gartner's research may discuss legal issues related to the information technology business, Gartner does not provide legal
advice or services and its research should not be construed or used as such. Gartner shall have no liability for errors,
omissions or inadequacies in the information contained herein or for interpretations thereof. The opinions expressed herein
are subject to change without notice.

POLO00137239
POL00137239

POL-BSFF-0000026_0095

ANALYSIS

Situation Now

Open-source software (OSS) enterprise service bus (ESB) technology is available from multiple
open-source communities, including Apache, ChainForge ESB, MuleSource and WSO2. In
addition, Sun Microsystems' Java Business Integration (JBI) reference implementation (Open
ESB) is available as an open-source offering.

The creation of most OSS products is driven by a combination of community notion, the existence
of standards and the availability of OSS technology components. This potent combination led to
the creation of multiple OSS infrastructure technologies, such as portals and Java Platform,
Enterprise Edition (Java EE) application servers. In the same way, OSS ESBs are being driven
by a collection of standards — two of the most notable being the Java Messaging Service (JMS)
and JBI (aka JSR 208).

Standards most-frequently used to create OSS ESBs include:

e Connectivity: Support for JMS, Java Database Connectivity (JDBC), TCP, multicast,
HTTP, SMTP and Post Office Protocol Version 3 (POP3).

e JMS: An application programming interface (AP!) for implementing reliable enterprise
messaging. The core of an ESB is a Web-services-capable communication subsystem
that can support optional mediation functions, particularly for (but not limited to) service-
oriented architecture (SOA) applications (see "Open Source in MOM, 2008").

e JBI: A runtime architecture that enables plug-ins to interoperate via a mediated
message exchange model. This enables the seamless addition of JBI-compliant
services that perform validation, routing and transformation, as described above.

e BPEL: Several OSS ESB technology downloads extend the core ESB feature set. A
feature frequently offered in conjunction with the ESB is a process orchestration engine
that supports aspects of business process management (BPM).

Note that none of these standards are definitional, and that their use varies among open-source
communities.

OSS ESB technology also is available from vendors that offer it in conjunction with maintenance
and services for that technology. Examples of such vendors include lona (Fuse became available
in July 2007), Red Hat (JBoss ESB became available in February 2008) and Sun (Open ESB
became available in June 2005). Note that these vendors, although offering OSS ESB technology
as stand-alone products, use it as a leader to broader, more-complex suites.

Combined, there have been approximately 1.5 million downloads of OSS ESB offerings, but it's
impossible to identify how many of those downloads are in production. The primary reason for
this is because there are no license fees for OSS technology. However, license fees are only one
component of the total cost of ownership (TCO). The staff required for support and maintenance
when OSS ESBs are used in a production environment adds significantly to the TCO. Figure 1
compares TCO with other salient characteristics for OSS, supported and commercial ESBs, using
characteristics explained in Table 1. Note that it's unlikely the criteria used will be equally
important to all organizations.

Publication Date: 25 March 2008/ID Number: G00155743 Page 2 of 6

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0096

Figure 1. Comparison of OSS ESB Technology Sources for Production Environments

Openness

Extensibility . ' b . Safety

~ Private
—4&— Supported OSS

Y, Breadth of

Productivity =~ Features

\Engineering

Low TCO™
Excellence

Source: Gartner (March 2008)

Publication Date: 25 March 2008/ID Number: G00155743

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

Gartner

POL00137239
POL00137239

POL-BSFF-0000026_0097

Table 1. ESB Characteristics

Openness Integration, interoperability, portability, "pluggability,”
access and standards compliance (JBI, JMS and
ActiveMQ)

Safety Viability, commitment to market, continuity,
manageability, cost of exit and customer experience

Breadth of Features Breadth, completeness of function, and service from
vendors and partners

Engineering Excellence Internal architecture, code quality and delivery record

TCO Total costs to include license, maintenance, support and
staff skills

Productivity Ease of use, training, learning curve and time to results

Extensibility An architecture that enables users to plug in optional,

intermediary functions to process messages in transit

Source: Gartner (March 2008)

Users are attracted to the use of an OSS ESB because it reduces capital expenditures
(eliminating license costs) and vendor dependence. However, OSS technology is a double-edged
sword. On the one hand, it offers significantly reduced costs for technology acquisition,
documentation and updates. On the other hand, when deploying OSS technology, an end-user
organization can end up devoting significant (and, in many cases, unplanned) head count to
maintain IT infrastructure that uses OSS ESB technology. This can result in a backward situation
in most organizations whose strategy is to minimize overall IT costs.

Future and Transition

By 2012, OSS technology used for SOA deployment will evolve to the point where the ESB is
only one of many SOA backplane components (see "Predicts 2007: SOA Advances" and "Toolkit:
Planning for Service-Oriented Architecture With the Gartner SOA Adoption Model") available from
open-source communities. Examples of additional, available OSS components include registry, a
BPEL process orchestration engine and SOA governance.

Relevance to Technology Users

Gartner metrics project that, during 2007, 22% of IT budgets were spent on SOA. With the
appropriate support and services, OSS ESB technology offers the potential to reduce the portion
of SOA budgets allocated to acquiring and deploying infrastructure.

Recommendations for Users

e Consider using OSS ESB technology as part of an incremental approach to building an
SOA backplane.

e ldentify the staff required to administer and maintain OSS ESB technology in a
production environment. Note that OSS ESB maintenance will include the staff required
to debug problem reports that are traced back to the ESB. Consider supplementing your
staff with services and maintenance offered by vendors.

e Recognize that as your SOA maturity grows, your needs evolve from features provided
by basic ESBs to those of a more-comprehensive SOA backplane.

Publication Date: 25 March 2008/ID Number: G00155743 Page 4 of 6

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POLO00137239
POL00137239

POL-BSFF-0000026_0098

POLO00137239
POL00137239

e (OSS ESB technology can be used in conjunction with other OSS offerings to provide the
features of an SOA backplane. Identify the interoperability of OSS offerings. (JBI
compliance is one approach to interoperability.)

¢ Recognize that an ESB isn't just about SOA. It also provides basic application
integration features.

e Application infrastructure vendors should be wary of OSS technology. Adoption is
growing. Vendors must offer ESB products with support and maintenance that provide a
cost-effective alternative to an OSS ESB.

RECOMMENDED READING

"Predicts 2007: SOA Advances"
"Toolkit: Planning for Service-Oriented Architecture With the Gartner SOA Adoption Model"

"User Survey Analysis: SOA, Web Services and Web 2.0 User Adoption Trends and
Recommendations for Software Vendors, North America and Europe, 2005-2006"

"Red Hat Seeks New Market With Open-Source SOA Platform"
"Open Source in MOM, 2008"

This research is part of a set of related research pieces. See "The State of Open Source, 2008"
for an overview.

Publication Date: 25 March 2008/ID Number: G00155743 Page 50of 6
© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved. Gartner

POL-BSFF-0000026_0099

REGIONAL HEADQUARTERS

POLO00137239
POL00137239

Corporate Headquarters
56 Top Gallant Road
Stamford, CT 06902-7700
USA.

* GRO |

European Headquarters
Tamesis

The Glanty

Egham

Surrey, TW20 9AW
UNITED KINGDOM

i GRO

Asia/Pacific Headquarters
Gartner Australasia Pty. Ltd.
Level 9, 141 Walker Street
North Sydney

New South Wales 2060
AUSTRALIA

Japan Headquarters
Gartner Japan Ltd.

Aobadai Hills, 6F

7-7, Aobadai, 4-chome
Meguro-ku, Tokyo 153-0042

Latin America Headquarters
Gartner do Brazil

Av. das Nagdes Unidas, 12551
9° andar—World Trade Center
04578-903—Sé&o0 Paulo SP

QIATZU.

GRO

Publication Date: 25 March 2008/ID Number: G00155743

Page 6 of 6

© 2008 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

Gartner

POL-BSFF-0000026_0100

