FUJ00098223

FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

Document Title:

Document Type:

Abstract:

Status:

Distribution:

Author:

Host Applications Database Design and Interface Standards

Standard

This document defines the standards for the design of all
database applications which run on the Pathway Host Systems.
It also defines how these applications should interface with one
another.

Issued

Library

Pathway Programmes Directorate
Pathway Development Teams
Oracle Development Team
A&TC Dublin

Graham Lloyd

© 1999 ICL Pathway Ltd

COMMERCIAL IN CONFIDENCE Page 1 of 81

ICL Pathway

Host Applications Database Design and

Interface Standards

FUJ00098223
FUJ00098223

Ref: TD/STD/0001
Version: 3.0
Date: 29/4/99

0

0.1

0.2

DOCUMENT CONTROL

DOCUMENT HISTORY

Version

Date

Reason

0.1

2/12/97

Between Applications

First draft containing only section entitled Communicating

0.2

19/12/97

Second draft while still incomplete. Produced to get initial
feedback from reviewers.

0.3

7/1/98

First draft for full review

0.4

9/2/98

Updated with review comments

1.0

9/3/98

Baselined version.

Minor additional updates.

1.1

24/9/98

= Security Section rewritten.

= Section added on the use of shared Oracle libraries

= Section added to cover ad hoc updating.

= Section defining naming standards for sequences added.

= Section added to define the documents which need to be
produced fully to describe an application.

= Archive Type FK added to Archived Tables definition.

= Source type “B” added to Action Audit Trails.

= <sign> declarative added to list of archive file directives.

= Definition of null in archive data redefined to align with
the PAS/CMS implementation.

2.0

9/11/98

Baselined on CP1582.

= Updated with review comments.
= Definition of how Oracle users are delivered with an

application added - CP1558.
= Scope of Oracle auditing extended - CP1555.
= Year 2000 standards added.

21

8/3/99

20698).

= A definition of how Oracle users are set up for an
application is added to section 15 (PinICL 17350).

= Section 2.21 added specifying the character set to be used.

= Section on the use of public synonyms added (PinICL

3.0

29/4/99

Baselined on approval of CP1910.

APPROVAL AUTHORITIES

Name

Position

Signature

Date

Dick Long

Design Manager

Development Manager

COMMERCIAL IN CONFIDENCE

Page 2 of 81

FUJ00098223

FUJ00098223
ICL Pathway Host Applications Database Design and " Ref: ;FIg/STD/OOOl
ersion: X
Interface Standards ote SBUAED
Testing Manager
0.3 ASSOCIATED DOCUMENTS
Ref. | Vers. | Date Title and Reference Source
1 1.0 |11/6/98 Host Systems Low Level Design Document Pathway
Specification
Pathway ref.: TD/STD/002
3 2.0 |24/2/98 Access Control Policy Pathway
Pathway ref.: RS/POL/003
4 3.0 [3/12/97 Security Functional Specification Pathway
Pathway ref.: RS/FSP/001
0.4 ABBREVIATIONS
A&TC Application & Technical Consultancy (ICL)
APS Automated Payments System
BA Benefits Agency
BES Benefits Encashment Service
BPS Benefit Payment System
CAPS Customer Accounting and Payments Strategy
CBO Cost Based Optimises
CD Compact Disc
CM Configuration Management
CMS Card Management System
CPU Central Processor Unit
CTAS Create Table ... As Select SQL construct
DBA Database Administrator
DDL Data Definition Language
DFD Data Flow Diagram
DLR De La Rue
DLT Digital Linear Tape
DML Data Manipulation Language
DW Data Warehouse
ESBM Enterprise Scalable Backup Manager
ESNS Electronic Stop Notice System
1SO International Standards Organisation
MIS Management Information System
NINO National Insurance Number
NUMA Non-Uniform Memory Access
OBCS Order Book Control System
OLTP On-Line Transaction Processing
00 Object Orientation
OSBM Oracle Scalable Backup Manager
PAS Payment Authorisation Service
PC Personal Computer
PL/SQL Oracle’s Procedural Language extensions to SQL
PMS Payment Management Service (equivalent to PAS)

COMMERCIAL IN CONFIDENCE

Page 3 of 81

FUJ00098223

FUJ00098223
ICL Pathway Host Applications Database Design and Ref: TD/STD/0001
Interface Standards VeEmh Bl
Date: 29/4/99
POCL Post Office Counters Limited
PQO Parallel Query Option

0.5

RDBMS Relational Database Management System
RDMC Reference Data Management System

RM Royal Mail

RPC Remote Procedure Call

SLA Service Level Agreement

SQL Structured Query Language

SMP Symmetric Multi-Processor

SRDF Symmetric Remote Data Facility

TIP Transaction Information Project

T™MS Transaction Management System

TPS Transaction Processing System

GLOSSARY

Abend A Maestro term for the abandonment of a job because of failure

Application A self-contained collection of data and code which satisfies all
the data processing requirements of a particular corporate
function

Database Link An Oracle term for a named object that describes a path from
one database to another.

Encapsulation Within the Object Oriented approach to software development,
encapsulation is the term used for packaging data and methods
together such that the structure of the data within an object is
hidden from external methods.

Entity Usually used in reference to the “Entity Relationship Model
(ER Model). It generally (though not exclusively) is used to
refer to some “real world thing” which is to be modelled by the
system.

Functional Pertaining to the business application using the database

Method An Object Oriented term for the implementation of a unit of
processing.

Object a) In Object Oriented terms, an object is an instance of an data

Non-functional

Schema

type or class. It is similar to an entity in that it is concerned
with data. However, unlike an entity, an object is concerned
also with the methods that manipulate that data.

b) In an Oracle context, an object is an element of the schema
(e.g. table, index, etc.)

Pertaining to those components of the system, such as backup
and recovery, which have nothing directly to do with the
application.

An Oracle term for a collection of logical structures of data or
schema objects. A schema is owned by a user and has the same
name as that user. There are therefore as many schemas within

COMMERCIAL IN CONFIDENCE Page 4 of 81

FUJ00098223

FUJ00098223
ICL Pathway Host Applications Database Design and Ref: TD/STD/0001
Interface Standards WISk B0
Date: 29/4/99
an Oracle database as there are users.
Schema Object A logical data structure within an Oracle database, such as a
table, view, synonym, database link, or index.
Synonym An Oracle term for an alias for a table, sequence or program
unit. The aliased can be within ones own schema, within
another schema in the same database, or within a schema in a
remote database.
0.6 CHANGES FORECAST

None

COMMERCIAL IN CONFIDENCE Page 5 of 81

FUJ00098223

FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

0.7 TABLE OF CONTENT

1. INTRODUCTION 9

L., INTRODVUGTION rreascssissmmumapensinssrammmsaymsssssmmmemsdsmess s s s s i e 9
1.2 SCOPE

2. DESIGN PRINCIPLES 11

2.1 USE OF REPOSITORYuttiiiiititiietitieiinieentseeeeteeteeieteaent st et s et seseneae et et e e easatesentseeseseseasssesesensasasesennens

2.2 APPLICATION DESIGN....

2.3 NAMING S TANDARDS: : cccommmsemiatmmmmemiams s i st it it s sz

2.4 APPLICATION SELF-CONTAINMENTccoitiiitiiiiiiiinntiieteieeiniiieeeneeeeeetee e cseteneeseeseseseacseseneneasaseseseeas

2.5 SCHEDULINGccccootiiiiiiiiiiiceneercecerenaeene

2.6 SUPPORTABILITY
2.6.1 THE REQUIREMENT, FOR PASSIVE SUPPORT ..uusscessssssvesusssnesnsssissnssmsnssssssssnssssassssessssssssaseaseass
2.6.2 MONITORING DATABASE AND APPLICATION ACTIVITY
2.6.3 INTERACTIVE USE OF ADHOC DATABASE ACCESS PRODUCTSc.ccccoovioniiniiiiiiiniiniaeaecannans 13

2.7 PROGRAMMINGLANGIIAGES . cocooivcemmmmmmim st e e s s asesiss

2.8 DEFENSIVE PROGRAMMING.........ccccenreeee

2.9 PEREORMANCE - w-cssovmemmmmsssssassrmmmammssse

2.10 AUDITINGcooiiiiiniiiiiiinicciene e

2, 11 ARCHIVING . sesesmremmsmmsmesrmssmmamssaens

2.12 HANDLING OF REFERENCE DATA

2.13 BACKUP AND RECOVERYccccccvvunnn

2, L4 RESTITENCE . iiisvsimsissssissmsmsssisnsissisiasssionsissessiisnssiissusissis s ssassintios usissiiaess s oo saaarns s dsstioiuonsadusi Namistinssiasioisi

2, 1.5 CONSIS TENCY OHE CRINGE . vocemesiiosi omssmmsemmsmsestossesasmesms s smysssas s syasmss s s s e i aeass

2.16 SECURITY

2: LT MIGRATTON suwssesssissonsmaseqpansssissessoresyemssssas s i svesss s 8o s sers ool s e sssesgssdieids

2. 18 TIMEKEEPING ...ttt ettt et sttt es et eeset et eees s e et sesent et esesee e eassenentseeseseseacstaseneneasasesenenens

2.19 USE OF DDL

220" YEAR 2000:COMPLIANCE w2.cvssmamermsmssin s s s i i i s s s ey i s ainss

2:21 CHARACTERSETS :.comaumssmmmmunscomumsusvmmmsns saes e mmumns s 0 s ms0sms o so sawses d00 a5 3 Vo008 4975 05 a0 40 0 0ane ¥

3. NAMING STANDARDS 19

3.1, GENERAL-S TANDARID S cciumevasssaniontiommusssimisninsemesms i i e s e st v et ey e et essmasas
3.2 APPLICATION NAMES
33 MODULES.cccocvoenviniane
S b S5 —

3.4.1 GENERAL RULES FOR TABLE NAMES........ccccoccviivnnininiinnssineesenns

3:4:2 FABLE NAMES s orecosuossaesvesssnsm s essossosmis s oasesui sa s e s et s s esinss

3:4.3 PABLE ALIASES ::ccc.cvvssvrnsomvsimvsssmmmsmvmnesssssswasm sspssvsssvassan sssesvrasesas
3.5 CONSTRATNT NAMEScivcreammasmensusiassensnmmnsassensussusassssusssssnssmsmmeeressssass

3.5.1 PRIMARY KEY CONSTRAINTScccoiiiiiiiiiiniiint et evineeineens

3:5.2 FOREIGNKEY CONSTRAINTS . scxusvivemmimiswsiamemvvsiwivmasmmmsasonsunss

8:5:3 CHECK CONSTBRATNES evvivvsssssnssmmmmmssnsss oo e o s e e e s s oo s s emssrans 22
g 6L L T —
3.7 SYNONYMS TO OBJECTS IN OTHER DATABASES
3.8 STANDARD EXPRESSION ABBREVIATIONS :.cc: ssvssanmssssm svesssmssmmusomessrssrssmsssns ssvrsvmissnmsns covvivswasasssass
T WNAME TYPES.......cncueasssonusnnssnsinssesnnesnsnnssensessonssssassesasans isenssssassssssises asssssasesssisn oassnsssssssssnsssassssss sss issasssesns

4. APPLICATION DOCUMENTATION 25

4.1 DOCUMENTS ...ttt ettt sttt ee et ettt eh et e et et et eh e et e s et et et et et et ene e et anesencanas
4.2 THE.RBPOSTEORY,onvpmmasnesmmsm s
4.3 DOCUMENTATION OF DESIGN DECISIONS
4.4 DATA DEFINITION
4:4.1 MODULES s vwsosswsnsvorsvrsiasanss
G0 EABIB IS ottt At e e S Sl 27

COMMERCIAL IN CONFIDENCE Page 6 of 81

FUJ00098223

FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

4:4:3 VIETUS ivosvvssasasvasssms.osssss s i35 ms s ssasson 37 59508850 45044508 50038305 530530 S50 490 S5 AR 90§ SR VA SR AR5
4.4.4 COLUMNS
4.4.5 OTHER OBJECTS SUBORDINATE TO TABLES AND VIEWS.....cccccoiiiiiiiiiiiiiniiiiiiaiineneeececaeeneas 28
4:5 SCHEMAGENERATION eecerossscssommaresramssasssmmmrersmsssiasmms s s s s e s e e aasudss 28
4.6 DIAGRAMScccccoevvvviinnn
4.7 USER DEFINITION

S. APPLICATION CONTROL 30

5.1 OVERVIEW OF AN APPLICATION’S FRAMEWORK TABLEScccoiiiiiiiiiiiieneinieeseciineneeneas 30
5.2 OPERATIONAL PARAMETERS
5:2.9 SYSEEM PARAMEBTE RIS iscuisvvsvemsumussinsivessmsssias pove sy oo mmessies fa oo s omseloss Fe g7 s s req s emesiesiass

5.2:2 APRLICATION PARAMETE RS, .z towiomivmmmmvaiomtsivmmmmmsmiootaei et it et s et 32
5.2.3 UPDATING PARAMETERS
5.3 PUBLIC SNNCINVAMIS ez e swsmsessssn nanesssmssnswssssnsmasnsssy o5y s ey s a8 s s i 5y s i s s iR

6. UNPLANNED ACCESS TO A LIVE DATABASE 34

6.1 REQUIREMENT FOR STRUCTURED ACCESScooiiiiietiii ettt st et seeseieeseeseaneneenens
6.2 DISCOVERER FOR AD HOCENOQUIRIES.......couiumcaiouinivusumsunnivuisasassnasmssainassaassioasasssassamondeasases
6.3 AD HOC UPDATING OF NON-FUNCTIONAL DATA....

6.3.1 FORM BASED UPDATINGcocovssisisosissssvsssssmssasissonssvssenasssnsssssions

6.3.2 UNPREDICTABLE AD HOC UPDATEScc.couiiititiiiiiiiiiiit ettt st ettt eeneenens

7. AUDIT AND ARCHIVING 38

7.1 AN OVERVIEW OF AUDIT AND ARCHIVEcccccecaeiericmmeenennereeseneesenarnessentearaasssseenessesssnsanseseenesassnsaene 38
A L 2 1 e T 39
%2 1 TYPESOE ACDIT DATA, vvsivsosmmimsssissesmomsevsiisissnsssamsassssisssos s o ass e isoms s s fogessssasisias feyposasestssiesss

7.2.2 PROCESS AUDIT TRAILS
7.2-3 BILEAYDITTRATES scorommrm s s s s 5 e e e e oo s e e st
7.2.4 AUDITING OF INTER-DATABASE TRANSFERS OF DATA......ccccoociiiiiiiiiiiiitiiiieciinecieeceneenene 43
7.2.5 ACTION AUDIT TRAILS
T3 ARCHIVE DAT A cvuwusn sossavrrsanusssasnosisnavmissn covsonssisasss s sy oy s sy am0s iy v (551574 07V (800800 800 9 0asaniass
7.4 THE MECHANISM FOR ARCHIVING DATA FROM A DATABASE
7.4.1 ARCHIVE CONTROL
7:4.2 NAMING OF THE ARCHIVE FILEcccouoesuasconensassnsssessansussasansasnsnsssssusasasssns sesassenoenassasnes seasaessenseass
7243 BHE ARCHIVE PROCESS! vt mmim i m ot i pdatms e et
7:4.:4 ARCHIVE FILE FORMAT o cvovemmvmmomesissmommmim sy sz
7.4.5 FUTURE ACCESS OF ARCHIVED DATAccccccooocceviiinoiniiiiananas
7.5 ARCHIVING OF FILES USED FOR LOADING AND UNLOADING
7.5.1 CONTROL OF THE ARCHIVING OF NON-DATABASE FILEScccccoccouitmiininiinnaineineneenennaes

8. EXCEPTION HANDLING 53

8.1 EXCEPTION HANDLING PRINCIPLEScoiiiiiitiiatitiiiiaetnteeeteeteenieeeentseeeeseeeneteseeseeeeseseeenseseseseneesens 53
8.2 HANDLING UNEXPECTED EXCEPTION CONDITIONS ..ottt eneneene e 53
8.3 EXCEPTIONS TABLES
84 EXCEPLION CODES e ssimsmmsmssesmrsses s e s s s s i e e e s e S s

9. COMMUNICATING BETWEEN APPLICATIONS 56

9.1 BACKGROUND s e e e s

92 ALTERNATIVE OPTIONS . mvmmemimmmmmm tiosmsimmms i s mii s s m i e s s s s e me s o
9.2.1 REPLICATED DATA...............
9.2.2 DISTRIBUTED DATA

9.3 DATABASE LINKS AND SYNONYMS

9:4 TRANSPARENT GATEWAY: St...covrimmummavns comummsumsases sovsmarass s coomsmisaasn s sss (s 50 s soaims s somipussasmss

9.5 APPLICATION INTERFACE STANDARDS
9.5. 8 NOMENCEATUREcsonncsessessssssanssasanessmssssososssn
9.5.2 DOCUMENTING THE INTERFACE
953 DEFINING THE. INEERFACEDATA . svomisinismosmmminionismmmam i ioims e aeaoms fass adead aie 62
9.5.4 NAMING OBJECTS AND SYNONYMS IN THE INTERFACE USERccccooouiiiniiiiiniiiniiiniioenncnns 63

COMMERCIAL IN CONFIDENCE Page 7 of 81

FUJ00098223

FUJ00098223
ICL Pathway Host Applications Database Design and Ref: TD/STD/0001
Interface Standards Versteti: 5.0
Date: 29/4/99

9.5.5 INTERFACE CONTROL IN THE REMOTE APPLICATION.............oo..ooooooooeeeeoeeeeeeeeeeoe e 63

9.5.6 USING SQL TO ACCESS DATA IN DISTRIBUTED DATABASES

9.5.7 HOUSEKEEPING OF THE REMOTE INTERFACE USERoooooooeevoeeeeeoeeeveeeeeveseseveeeevee oo

9.5.8 ACCESSING REMOTE DATA FROM A LOCAL APPLICATIONooovoeooeeeeeoeeeeseeeeeeeeeeeseenenes
10. MAPPING APPLICATIONS TO DATABASES 68
10.1 GENERAL PRINCIPLESooioiiiooeioooeeeeeeeeee s seee e seee e 68
10.2 APPLICATION SEPARATION CRITERIAooouiooiioeioeeoieeoeeeeoeeeeeeee oo eeeeeeee e esoeee oo 68
11. PERFORMANCE 70
O e A P S S ——— 70
11.2 OPTIMISATION OF SELECTS ON THE SMP PLATFORM..........ouciveoieeeieeeeseeeseeeseeeeseeeseeeeseeseeennes 70
11.3 INDEXES VS. PARALLEL JOINS
11.4 RECORD DELETIONooioimiiiiieoooeseeeeeee oo
T1S LOADINGcoooooeeeeeeee e
11.6 FOREIGN KEY CONSTRAINTS
11.7 WRITING OUT DATA TO FLAT FILESoooovoiioeeeeeeeeeoee oo seeee e s oo eeeee e 71
11.8 USE OF ORACLE SHARED LIBRARIES..........coovuiveeiieeorieoeeeeseeee e eeeeeeeeeeseeeeseeeseeesseeeseesseeeeseeeseeeesees 71
12. BACKUP AND RECOVERY 73
12.1 THE REQUIREMENT FOR BACKUPS..........coooiotiee oo eeeeeseeee e eeeeeeeeeeeeeeseeee e esseeeseeeseeeeseeseeeeenes 73
122 BACKUP STRATEGY ..o oo se e 73
13. RESILIENCE 75
LT T ot temtcm e e e B T e T SRS IS 75
1B ZBIS ASTEE. EROV IS0 s mmmmmmramesmsmmn s s s s 75
14. CONSISTENCY CHECKING 76
14.1 REQUIREMENT FOR CONSISTENCY CHECKINGcoooocooeioee oo eeeeeseeee e eseeeeseeeseeeeseeeseeeesnes 76
14.2 CONSISTENCY CHECKING PROCEDURES
14.3 RESOLUTION OF INCONSISTENCIEScoovvotivoieeereieeeeeesessoeeeesee oo
15. SECURITY. 78
15.1 SECURE ORACLEBUILD...............c...........

15.1.1 SECURITY REQUIREMENTS...........ovvoeoooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e

15.1.2 DATABASE LINKS TO INTERFACE USERS...........coovvvoooeveeeeereenrnnnee

15.1.3 SESSION LEVEL AUDITINGoooeoooveceseeeeeeeeeeseeeeeesveeeseeeessnennn

15.1.4 ORACLE USERS......oooocovvveoeseeeossveisseeiessssssssissssssssssssssssssssssenns

15.1.5 USE OF INTERACTIVE SQL*PLUS........ooooooeeooeeeooeeeooe oo eeee oo eeoee e e eese e
1B P BN TR eon e i s e

15.2.3 HYPOTHETICAL EXAMPLE OF AN ACCESS CONTROL MATRIXooooooeeeeeeeeeeeeeeeeeeeeeeeeene 83

15.2.4 STANDARD USERS FOR ALL PATHWAY APPLICATIONS.

15.2.5 DOCUMENTATION OF THE ACCESS CONTROL MATRIXoovooooeeeoeeeeoeeeoeeeevee e 84
15.3 SECURITY OF EXTERNAL INTERFACESccoovoiooooioeeoeeeeeeeeoeeeeeoeee oo seeeee e e seeee e 84

COMMERCIAL IN CONFIDENCE Page 8 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

1. INTRODUCTION

1.1 INTRODUCTION

The ICL Pathway programme is made up of a growing number of applications all of
which have the same basic structure. They have a counter layer which runs on the
counter PCs at the Post Offices, an agent layer which runs on NT Server systems at
the Data Centres, and a host systems layer which runs on large UNIX SMP machines
also at the Data Centres.

In order to minimise development, support, and maintenance costs, it is essential that
all these applications have the same basic structure. In other words, where there are
requirements for functions such as exception handling or archiving, these functions
must be performed in the same manner in all applications. To achieve this, it is
necessary for Pathway as an organisation to impose a set of standards for the
implementation of the database aspects of applications at the host layer, and then to
ensure that those standards are adopted by all application developers.

This document satisfies the first of these requirements in that it defines the standards.
To ensure that the standards are adopted, Pathway must have within it a central
administration function whose responsibility it is to police these standards.

It is intended that these standards should be applied to all host applications that are
developed by Pathway, whatever RDBMS is used to implement them. At present,
Pathway’s strategic RDBMS for these applications is Oracle. Consequently, in this
document, where it is necessary to specify technical details or to give examples,
Oracle terminology is used. If it is decided to use an RDBMS other than Oracle for an
application, then the principles behind the standards should still be applied, even if the
detail is not in all cases appropriate.

The standards defined are, where appropriate, loosely based on those used for the
PAS/CMS Oracle application.

1.2 SCOPE

This document applies only to the design of the host system applications that are
implemented on the Pathway Sequent Servers. It does not consider the requirements
of the TMS layer or the Counter layer. Nor does it consider how the individual
modules within a host system application are specified at the lower level. Although
the application design principles defined within this document do have an effect upon
how the individual modules are designed, the standards to be used for specifying these
modules are defined in a different document (ref. [1]).

The standards specified herein apply to all current and future releases of the total ICL
Pathway solution.

Further information about exactly how an application should be specified and
documented, and about how this particular document fits into the overall hierarchy of
standards documentation, can be found in the Pathway On-Line Standards.

COMMERCIAL IN CONFIDENCE Page 9 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

2. DESIGN PRINCIPLES

2.1 USE OF REPOSITORY

All Pathway host applications, whether based on Oracle or not, must be defined and
fully documented within a central Designer/2000 repository. This is necessary so that
the development of all applications can be controlled, monitored and managed. More
detailed information about the objects and properties which must be defined within
the repository can be found in section 4.

2.2 APPLICATION DESIGN

An application is a self-contained collection of data and code which satisfies all the
data processing requirements of one or more major corporate functions. Within
Pathway there are a growing number of applications all of which have similar
security, operational, support and manageability requirements. It is logical therefore
that they should all be constructed in a similar manner. This reduces development,
support and maintenance costs, and minimises the risks of a database becoming
corrupt due to mistakes being made by support staff.

To achieve this aim, all applications must be designed using a standard set of
framework tables.

The framework tables are designed to handle:
e application control;
e exception reporting;
e the auditing of:
= batch processes;
= file loading and unloading;
= unplanned database access by support staff, and;
e archiving.

These framework tables are discussed in detail in sections 5, 6 and 8.

2.3 NAMING STANDARDS

Organisation-wide naming standards are essential for any organisation which aspires
to have control over the development of its database applications. This is necessary so
that there is no confusion within that organisation when particular terms are used to
describe particular objects, attributes or activities.

The naming standards to be adopted by all Pathway applications are defined in section
3.

COMMERCIAL IN CONFIDENCE Page 10 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

2.4 APPLICATION SELF-CONTAINMENT

It is important that object-orientation as a concept is embraced by Pathway at the
application level. This means that all applications must be designed to be self-
contained, or encapsulated in OO terms. This is necessary because if applications are
not kept completely separate from one another, developing one application would
inevitably result in any interfacing applications also having to be further developed,
making the whole development and testing process unwieldy and practically
unworkable.

Encapsulation at this level means that communication between applications is only
allowed via pre-defined, documented interfaces which are in no way dependent on the
applications’ physical implementations. At the logical level, one application must not
be dependent on how another application is implemented. This means that physically
applications should be able either to co-exist within the same database, or to exist in
separate databases, without this affecting the code within the applications.

Performance, operational and management considerations alone should then be used
to dictate how individual applications are physically implemented. More details on
this can be found in section 10.

A detailed description of how interfaces between applications should be developed
can be found in section 9.

2.5 SCHEDULING

Within an organisation of Pathway’s size, it is essential that batch jobs are scheduled
reliably. If this does not happen the organisation is at risk of missing deadlines, or
worse, if jobs are inadvertently run in the wrong order, of corrupting databases.

The only way to reduce this risk to an acceptable level is to use a robust workload
management product to schedule all batch jobs. This product should ideally be able to:

o specify the sequences in which batch jobs should be run via both scripts and a
graphical user interface;

e resolve inter-dependencies between jobs running on the same, and different,
machines;

e launch and track each job;
e limit job concurrency;
o raise alerts if jobs fail in such a way that operator intervention is necessary, and;

e allow network administrators to control all clients on the network from a single
graphical management console.

Within Pathway, the strategic scheduler to be used is Maestro, and it is this product
which should be used to schedule all jobs within all the applications that Pathway
operates. Consequently all host application modules must be written such that they are
compatible with the requirements of Maestro.

Maestro must be used for all scheduling activities within an application. Application
modules must not be written to usurp any such activities.
COMMERCIAL IN CONFIDENCE Page 11 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

2.6 SUPPORTABILITY

2.6.1 THE REQUIREMENT FOR PASSIVE SUPPORT

No database application should require active support from operations or database
support staff. This means that the application must not require any person to log into
the database to update application data other than via scripts or forms which have
been developed as an intrinsic part of the application, and have been delivered via
CM.

The database must be designed such that it is capable of flagging up to support staff,
via Patrol alerts, any problems detected within the application, or within the database
engine itself. It should not require support staff to have to hunt out errors themselves.

More details on this can be found in section 6.

2.6.2 MONITORING DATABASE AND APPLICATION ACTIVITY

All database and application monitoring must be undertaken using the standard query
tool for the platform. For the Oracle databases on the Host Systems this tool is
Oracle’s Discoverer.

2.6.3 INTERACTIVE USE OF ADHOC DATABASE ACCESS PRODUCTS

Ad hoc, interactive access of the live databases using sql*plus or equivalent low-level
tools is not allowed. This is because the use of these products is:

¢ unauditable;
e can result in the corruption of live data;
e can impact the performance of production applications.

The methods that application designers should use to ensure that these tools can not be
used are defined below.

e No users or roles should be defined which allow on-line access, unless they are
part of the functional requirements of the application

e Updating the database should be allowed only via pre-defined access routes such
as via stored procedures that a particular user has access to.

e Except for the database administrator, no user should exist which has default
update privileges on all tables in the database.

2.7 PROGRAMMING LANGUAGES

The first choice of language for all server-based modules written for Pathway
applications should be ‘C++’ with Pro*C being used for the interface with Oracle.
Only when ‘C++’ can not easily be used, such as in database triggers, should
consideration be given to using pl/sql or other languages.

‘C++’ is used in preference to other languages because:

e it is a mature language which is reliable and widely known;

COMMERCIAL IN CONFIDENCE Page 12 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

e it provides the best performance for interfacing with Oracle, as well as with most
other RDBMSs;

o other Pathway applications are written using it, so there is a knowledge base for the
language within Pathway;

e it is portable between different RDBMSs.

e It is a “strongly typed” language that catches (at compile time) many of the errors
that its “parent” ‘C’ language would only find in test or live.

Unless Class’s simplify the implementation of a program, programs should be coded
so that they can be compiled by either ‘C’ or ‘C++’ compilers. All Oracle interface
modules should be coded in ‘C’ to take advantage of Pro*C’s native support for ‘C’
structures and parameters.

2.8 DEFENSIVE PROGRAMMING

As a general principle all applications must be coded defensively. This means that
there must be no assumptions made within an application about the quality of the data
which it receives from other applications within Pathway or, more importantly, from
external sources. All code should be written with the expectation that any exception
condition which could conceivably be foreseen will actually occur at some point in the
lifetime of the application.

If defensive programming principles are not adopted across the board within Pathway
there is a significant probability that corrupt data will find its way onto one or more
application databases, resulting in programs crashing and significant downtime.

The principles for defensive programming which should be adopted are as follows:

e All data input into an application’s schema must first be validated to ensure it
complies with the validation rules specified in the appropriate Application
Interface Specification.

e The outcome of any SQL statement or RPC call must be explicitly checked for any
sort of exception condition after each invocation.

e All modules must write away any exceptions which they encounter to “alerted”
exceptions tables within the application’s schema as described in section 8.

e All modules should be written so that they can “abend” to Maestro should they
detect fatal errors.

e All modules should be written in such a way that they can be automatically
restarted after any type of failure, notwithstanding database corruption, without
any sort of manual intervention.

e One should always assume that there are residual faults within an application, even
after it has been fully tested. Therefore, for critical information, consideration
should be given to cross checking record counts or ‘file’ totals using an alternative
processing path.

e All modules should be written to use structured exception handling:

COMMERCIAL IN CONFIDENCE Page 13 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

= “try, throw, catch” in C++ programs.

= “DO_TRY, DO_THROW, DO CATCH, DO_FINALLY” in C programs.
= “BEGIN, RAISE, EXCEPTION” in PL/SQL.

= “ON ERROR GOTO :label” in Visual Basic.

2.9 PERFORMANCE

The host applications are currently all implemented on Sequent SMP or NUMA
machines. To obtain the best performance from these machines, it is necessary to code
applications in such a way that they make best use of the multi-processor architectures
involved. This involves using parallel SQL constructs where appropriate and also to
make use of other techniques to optimise performance where circumstances so dictate.

This subject is discussed in more detail in section 11.

2.10 AUDITING

Pathway has contractual requirements to audit all events which occur on its databases
and to ensure that the audit trails so produced can not be tampered with. The method
by which this is achieved is described fully in section 7.

2.11 ARCHIVING

Internal and external auditors have a number of requirements to retain application data
beyond the time when it is operationally necessary to retain that data on Pathway’s
databases. This data is archived to off-line media in the manner described in section 7.

2.12 HANDLING OF REFERENCE DATA

Nearly all applications require some reference data, or standing data as it is sometimes
called, to enable them to function. Reference data is usually contained within an
application’s own schema in tables which contain a relatively small number of rows.
The uses to which reference data can be put are varied. Examples of reference data
are:

e Lists of codes together with their descriptions. These are usually used for
expanding codes to meaningful descriptions when the data is displayed on a screen
or in a report.

o Lists of values for validation where the values can change. If validation values are
fixed, then it is more usual to allow the RDBMS to validate them using check
constraints. If they can be changed, then the application carries out the validation
using a list of values in a reference data table.

e (alendars.

e System and application operational data. E.g. File transfer destinations, Post Office
addresses.

COMMERCIAL IN CONFIDENCE Page 14 of 81

FUJ00098223

FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

2.13

214

2.15

2.16

Reference data can either originate from requirements which are external to the
application or from those which are internal. An example of external requirements
would be Post Office addresses which must be used on orders for benefit cards which
are sent to De La Rue from the CMS database. An internal requirement could be a list
of validation values to be displayed on a screen. In order to safeguard the integrity of
all the Pathway applications, it is essential that the loading of reference data of both
types into an application’s schema is closely controlled.

Within Pathway, all external reference data must be provided by way of the RDMC
database. In this way, it can be guaranteed that all the data provided has gone through
a stringent Change Control process and has been successfully validated.

For the internal reference data, if updates are expected to be frequent, the changes
should ideally be made via a pre-defined form which has been designed specifically
for the purpose. As well as performing the update, this form would ensure that the
change is audited in the way described within section 7.2.5. If the updates are very
infrequent, or are linked to a particular release of a product, then it is acceptable to
make the changes using a tested, audited SQL script which has been delivered via
CM.

BACKUP AND RECOVERY

All host applications must be regularly backed up such that there is no realistic
possibility of data ever being lost should a media or system failure occur.

The method of achieving this for all types of host applications is described fully in
section 12.

RESILIENCE

All the applications developed by Pathway must be resilient to media and site failure.
The way this is to be achieved is described fully in section 13.

CONSISTENCY CHECKING

Routines which check the logical and physical consistency of all the data held within
an application’s schema must be implemented for all host applications. This subject is
expanded upon in section 14.

SECURITY

All Pathway applications must be designed to be secure against unauthorised access.
This is achieved by:
¢ enforcing explicit access control requirements for all database users;

e ensuring that links to the outside world are adequately protected.

More detailed information can be found in section 15.

COMMERCIAL IN CONFIDENCE Page 15 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

2.17 MIGRATION

When an application is upgraded from one release to another, any associated
migration of data between schema versions should be planned such that there is no
requirement to unload and reload live data from the database. Instead SQL scripts
should be developed to move the schema forwards. The upgraded version of the
application must therefore be written such that it can operate on data which was in
existence before the schema changes were made, as well as after.

The design documentation produced as a consequence of upgrading an application
should not only contain comprehensive information on how the upgrade should be
carried out, but also information specifying how the migrated schema can be regressed
back to what it was, should the new version of the application not function as
expected.

2.18 TIMEKEEPING

Applications must be designed such that their day to day operations are independent
of the system clock. Instead they should use a logical clock which is maintained by
modules scheduled by Maestro.

The system clock should only be used within an application for applying timestamps
to records, reports and interactive screens.

2.19 USE OF DDL

Although necessary on occasion for performance reasons, the use of DDL within
normal Oracle application modules should be avoided. Oracle DDL commands, such
as TRUNCATE, which removes all rows from a table without recording before
images in rollback segments, or the unrecoverable version of CREATE TABLE ...
AS SELECT... (CTAS), should not be used without due consideration for the
consequences should the commands fail. This is because the effects of these
commands can not simply be recovered by the RDBMS.

If, despite this, it is decided that the performance gains of using DDL commands are
such that the benefits greatly outweigh the disadvantages, then the modules which use
these commands should be designed such that, if they fail at any stage and have to be
restarted, there is no possibility of data ever being lost or of the database becoming
corrupt in any way.

2.20 YEAR 2000 COMPLIANCE

The year component of all dates used within an application must be stored within the
database as a four digit number. It must also be displayed as a four digit number on all
interactive forms and written as a four digit number on all printed reports.

If two-digit years are passed to an application, the date inferencing rules are the same
as those used for the Oracle RR date format element. These rules are summarised
below.

COMMERCIAL IN CONFIDENCE Page 16 of 81

FUJ00098223

FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001
Interface Standards Veblei Sk
Date: 29/4/99
If the specified two-digit year is:
0-49 50-99
If the last two | 0-49 | The return date is in the | The return date is in the
digits of the current century. century before the current
current year are: one.
50-99 | The return date is in the | The return date is in the

century after the current
one.

current century.

2.21 CHARACTER SETS

All host system databases must use the ISO 8859-1 West European character set (Oracle
acronym WESISO8859P1). This character set ensures that there is no confusion between the

“#” and “£” symbols.

COMMERCIAL IN CONFIDENCE

Page 17 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

3. NAMING STANDARDS

3.1 GENERAL STANDARDS

Within the database environment there are two important requirements for all names
given to objects, attributes and modules. They must be:

1. as meaningful as possible, and;
2. as short as is practicable.

This is necessary so that the schema definitions, the written code, and the
documentation are all manageable and easily understood. The problem with trying to
achieve this goal is that the two aims are incompatible, an incompatibility which
grows with the size of an organisation. If uncontrolled, this inevitably leads to the
same names being used to mean completely different, or, more dangerously, subtly
different, things, often within the same application. The only way for an organisation
to get control of the way objects and attributes are named is to impose organisation-
wide naming standards.

At a high level of abstraction, there are some general standards which can be applied
to all names that are adopted by Pathway. These general standards are defined below.

e Names should contain only recognised words or standard abbreviations.

e Names should contain only alphabetic and numeric characters, and the underline
character.

e All words or abbreviations within a name should be separated using the underline
character.

e Within an application’s own schema, the application itself should not be identified
in names (by the use of a prefix for example), unless that application explicitly uses
a sub-set/specialisation of an entity. E.g. “Products” is defined within the RDMC,
but the TPS subset is called “TPS Products”.

¢ Once a name has been chosen for an object or an attribute, only that name should
ever be used within the application for that object or attribute. E.g. If an event
timestamp attribute is defined in the Card Events table with a name of
Event Tsmp, then that column must have the same name on all the other
XXX Events tables within the application.

3.2 APPLICATION NAMES

Applications are self contained units of data and code which perform a single
corporate function. Although frequently a single application runs in a single database,
this is not a requirement and is often undesirable (see section 10). Each application
within the Pathway domain should have a single schema which contains all the objects
which are intrinsically used by that application.

COMMERCIAL IN CONFIDENCE Page 18 of 81

FUJ00098223

FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001
Interface Standards VeEmh Bl
Date: 29/4/99

The name used for identifying an application is specified within the Designer/2000
repository. It should be a short and meaningful name and contain within it no release
or version information.

Each application must have applied to it a three character alias which is defined on the
Designer/2000 repository within the application’s Notes attribute. This alias is used
only by distributed applications which require access to the defined application. It is
not to be used as a prefix or suffix within the application’s own schema.

3.3 MODULES

It is not recommended that names which attempt to describe the function of that
module are used for its naming. This is primarily because it is essential for scheduling
and the management of work to keep module names short. It is also because it is
usually very difficult to describe a module’s function meaningfully in a short name.

As a consequence, all Module names should be 7 characters in length. The first three
characters must be the application name (or the sub-application if the application is
logically broken down further), the fourth character defines the type of module (see
below), the last three characters are a three digit number which uniquely identifies the
module within the application.

Module Type

Module written in C or C++

Fourth Character

Developer/2000 Form

Module written in Java
SQL loader module
Developer/2000 Menu

Patrol Knowledge Module

Report
PL/SQL procedure

Visual Basic

UNIX Script

X < »l & Oz | =]

As an example, the “C” PAS/CMS module which validates cardholder data is called
CMSC103.

3.4 TABLES

3.41 GENERAL RULES FOR TABLE NAMES

All database tables should have meaningful, plural names.

3.4.2 TABLE NAMES

Type

Description

Standard

Simple

A normal table in the local database which

A meaningful plural name less than

COMMERCIAL IN CONFIDENCE

Page 19 of 81

FUJ00098223

FUJ00098223

Ref: TD/STD/0001

ICL Pathway Host Applications Database Design and

rather than the RDBMS.

Interface Standards VEEOE G0
Date: 29/4/99
Type Description Standard
Functional is part of an application 16 characters in length.
Table E.g. Cardholders
Simple Non- | A normal table in the local database which | If it is a framework table defined in
Functional is not part of an application. this document, then the name must
Table be as specified herein. Otherwise as
for simple functional tables.
Partitioned An application table which has been | A meaningful plural name less than
Table partitioned using the application software | 16 characters in length followed by

N©x).
E.g. Encashments 3

Flip-Flop Table

One of a pair (or possibly a trio) of
application table which is flipped to and
flipped back from, usually by means of
Create Table As Select.

A meaningful plural name less than
16 characters in length followed by
_Ax).

E.g. Payments B

Transient
Interface Table

An interface table which contains data for a
particular period of time.

A meaningful plural name of 16
characters or less in length
followed by _YYYYMMDD NN,
where YYYYMMDD is the
creation date and NN is an optional
numeric second suffix if more than
one version of this table can be
created in a particular day.

E.g. Mis Dw Cda 19971124

3.4.3 TABLE ALIASES

Every table within an application should have a three

character alias assigned to it.

This alias is used when naming a table’s primary key, foreign key and check

constraints.

3.5 CONSTRAINT NAMES

3.5.1 PRIMARY KEY CONSTRAINTS

A primary key constraint for a table should have a name of the form:

XXX PK

where XXX is the three character alias of the table for which this is the primary key,
as described in section 3.4.3, and PK is a standard suffix defining the name as a
primary key constraint.

For example, a primary key on the PAS/CMS Cardholders table is named: CDH_PK.

3.5.2 FOREIGN KEY CONSTRAINTS

A foreign key constraint should have a name of the form:

XXX YYY FK

COMMERCIAL IN CONFIDENCE

Page 20 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

where XXX is the three character alias of the table on which the foreign key is
declared, YYY is the three character alias of the table for which this is the primary
key, and FK is a standard suffix defining the name as a foreign key constraint.

For example, a foreign key on the PAS/CMS Cardholders table linking it to the
Card Types table is named: CDH_CDT_FK.
3.5.3 CHECK CONSTRAINTS
A check constraint should have a name of the form:
XXX column_name CHK

where XXX is the three character alias of the table on which the check constraint is
declared, column_name is the name of the column on which the check constraint acts,
and CHK is a standard suffix defining the name as a check constraint.

For example, a check constraint on the of interest column within the PAS/CMS
Cardholders table is named: CDH_of interest CHK.

3.6 SEQUENCES

The Oracle RDBMS includes within it a sequence generator for generating sequential
numbers. This is mainly used for the automatic generation of unique primary keys.

Oracle sequences for the generation of unique primarykeys should have a name of the
form:

XXX _SEQ

where XXX is the three character alias of the table on which this sequence is used, as
described in section 3.4.3, and SEQ is a standard suffix defining the name as a
sequence.

For example, a sequence used for generating unique primary key values on the
PAS/CMS Beneficiary Events table is named: BEV_SEQ.

If sequences are used for other purposes, the name should have the form:
XXX_YYYY_SEQ

where XXX and SEQ are as for primary key sequences and YYYY is a variable
length descriptive string.

3.7 SYNONYMS TO OBJECTS IN OTHER DATABASES

Objects in remote databases can be accessed either directly using the database link
name as a qualifier as in:

SELECT * FROM calls@pascms;

where pascms is the name given to the database link, and “calls” is the name of the
table on the remote database. Alternatively a synonym can be defined on the local
database.

COMMERCIAL IN CONFIDENCE Page 21 of 81

FUJ00098223

FUJ00098223

Ref: TD/STD/0001

ICL Pathway Host Applications Database Design and

Interface Standards Version: 3.0
Date: 29/4/99

To satisfy the requirements of encapsulation the direct method should never be used
by Pathway applications. Remote objects should always be accessed using synonyms.
Synonym names should have the format:

AAA meaningful name

where AAA is the three character application alias as described in section 3.2, and
meaningful name is a short, meaningful, plural name.

3.8 STANDARD EXPRESSION ABBREVIATIONS

All RDBMSs impose upper limits on the sizes of names which can be defined by the
user for objects and their attributes within the database. In most cases, these limits are
sufficient for meaningful names to be defined without the use of abbreviations. For
instance the Oracle limit of 30 characters for table names would appear to be
sufficient for most requirements. However, although allowed, names of this length are
unwieldy to use and can make code and schema definitions difficult to understand. In
practice, most designers and programmers would prefer that names did not exceed
about sixteen characters in size. Also the use of prefixes and suffixes, some of which
have been proposed in the above sections, further restrict the number of characters
which can be used for the meaningful part of the object names.

With these de facto limitations to name sizes, comes a requirement for the use of
abbreviations for all but the shortest of words which could be used within object or
attribute names. For these abbreviations to be understandable by everyone within
Pathway and to avoid confusion whereby the same abbreviations are used by different
people to mean different things, it is necessary for the same abbreviation to be used
for the same word in all cases within all applications. To achieve this, a centrally
maintained register of standard abbreviations and their meanings must be
implemented by Pathway. As an example the table below is the standard abbreviation
list for all the tables and columns used within this document.

Abbreviation Full Word
Appl Application
Desc Description
Distr Distributed
Excptn Exception
Id Identifier
Info Information
Msg Message
Obj Object

Seq Sequence
Tsmp Timestamp

COMMERCIAL IN CONFIDENCE

Page 22 of 81

ICL Pathway Host Applications Database Design and

FUJ00098223
FUJ00098223

Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

3.9 NAME TYPES

Names used within applications can often be grouped together into types. Examples of
types are: dates, times, timestamps, identifiers, sequence numbers, descriptions.

As with abbreviations, it greatly simplifies schema and code comprehension if
standard methods are used for naming objects or attributes which are of the same type.

It is recommended that the type, which can itself be an abbreviation, is used as a suffix

to the object or attribute, this suffix following after an underline character.

Again, it is necessary for Pathway to maintain a central register of the standards used
for naming types. As an example the table below is the standard abbreviation list for
all the types used within this document.

Suffix Type

_code codes which are used to simplify processing

_count Numeric attributes holding counts

_date Date attributes which do not have a time component
_desc Descriptions

_excptn Application exception tables

_id Identifiers

_name Peoples names

_seq Sequence numbers

_status Status information

_time Time attributes which do not have a date component
_tsmp Timestamp attributes which have both a date and time component
_type Type fields

COMMERCIAL IN CONFIDENCE

Page 23 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

4. APPLICATION DOCUMENTATION

4.1 DOCUMENTS

All host system applications must be fully documented at all stages of development.
This documentation should be made up of Word documents and an application within
a Designer/2000 repository.

The list below defines the documents that should be produced to describe the
application:

e Analysis Report
Outlines the functional requirements for the development of the application.

e High Level Design
Describes how the application is designed to meet the functional and non-
functional requirements.

e Access Control Matrix
Defines the access control policy for the application (see section 15.2.2). Where
feasible, this document should be generated directly from the data held in the
Designer/2000 repository.

e Application Volumes
Specifies the detailed volumetrics information used as the basis for the physical
design of the database. Where feasible, this document should be generated directly
from the data held in the Designer/2000 repository.

e Physical Database Configuration
Describes how the application’s database is physically configured onto disc.

¢ Installation Guide
Describes how the application should be delivered, installed and initialised.

e Application Interface Specification(s)
One of these documents must exist for each external or internal interface to the
each application. The document describes in detail all the physical and logical
aspects of the data that is transferred across the interface.

All other documentation should be contained within the Designer/2000 repository.

4.2 THE REPOSITORY

All the objects, together with their properties, which need to be defined for a
particular application, can be specified within the Designer/2000 repository. The
central software toolset within Designer/2000 is the Repository Object Navigator.
This toolset provides, for an application, an object hierarchy window and a properties
window. The object hierarchy window tabulates all the objects which can be defined
for an application. The properties window allows the properties of an object
highlighted in the object hierarchy window to be defined.

COMMERCIAL IN CONFIDENCE Page 24 of 81

ICL Pathway

FUJ00098223

FUJ00098223

Ref: TD/STD/0001
Version: 3.0
Date: 29/4/99

Host Applications Database Design and
Interface Standards

Although there is scope within Designer/2000 to specify large numbers of objects and
properties for a particular application, there is only a subset of them which are
essential for the logical systems design of an application which is to be implemented
by Pathway. This core of systems design objects and properties is defined below.

4.3 DOCUMENTATION OF DESIGN DECISIONS

Not only is it necessary to define all the schema objects (i.e., tables, views, indexes,
etc.) of an application within the repository; it is also necessary that the design
decisions behind those definitions are also documented. This is essential so that any
future changes to the application are made with the full knowledge of why the
application was designed the way it was in the first place.

The “Notes” property within each repository object type should be used for this

purpose.

4.4 DATA DEFINITION

441 MODULES

Each module within the application must be defined as a separate object. Within the
module object, the properties which must be specified are described in the table

below.
Property Description Example

Application System The name of the application system that | CMS
owns the module

Short Name The short name of the module CMSC502

Name name of the module Process card exceptions

Purpose The purpose or short description of the To process card exception files
module. sent from De La Rue to CMS

Language The language in which the module is Pro*C
written

Type The type of module Function

Complexity The complexity for this module Average

Command Line The command line used to invoke this <MODULE> <UN>/<PW>
module from the operating system

Description This section should contain a reference to | PCMS Document Reference
the Low level Design documentation (see
ref. [1]) held within PCMS.

Notes A version history of changes to the History of versions 0.1, 0.2 and
module under the headings: 0.3 of CMSC502
Version No, Reason, Who, Date.

4.4.2 TABLES

All database tables used within the application must be accurately defined. The table
below specifies only the logical properties which must be specified. For the successful

COMMERCIAL IN CONFIDENCE Page 25 of 81

ICL Pathway

Host Applications Database Design and

Interface Standards

FUJ00098223

FUJ00098223

Ref: TD/STD/0001
Version: 3.0
Date: 29/4/99

generation of schema DDL, a number of storage parameters, which are omitted from
this table, also need to be specified. These storage parameters are defined using the
standard Designer/2000 property elements.

rows that the table will hold

Property Description Example
Application System The name of the application system that CMS
owns the table
Name The name of the table CARD EXCPTNS
Alias A unique three character alias for the CDX
table name (as described in 3.4.3)
Display Title The title to be displayed when an item Card Exceptions
based on this table's data is generated
Volumes: End Rows | An estimate of the maximum number of 100,000

Description A brief description of the table Contains a row for each card
exception raised
Notes Documentation of design and storage Records are only ever inserted
decisions into this table. Pctfree therefore
setto 1.
4.4.3 VIEWS

Each view used within the application must be defined as a separate object. Within the
view object, the properties which must be specified are described in the table below.

Property

Description

Example

Application System

The name of the application system that
owns the view

PMS

Name

The name of the view

V PAYMENT PAYEES

Alias

A unique three character alias for the
view name

VPP

Select Text

The SELECT statement that specifies the
base tables and columns from which the
snapshot is derived

PPY.PAYMENT ID,
BEN.FIRST_NAM,

Where/Validation The condition that qualifies the view WHERE PAYEE_NINO =

Condition BENEFICIARY_NINO

Description A brief description of the view View of payment payee personal
details

Notes Documentation of design decisions To simplify access to payees by

module HLPF102 for Help Desk
Encashments

444 COLUMNS

Subordinate to both the Tables and Views objects within the object hierarchy is the
Columns object. The properties which have to be specified for this object are defined

below.

COMMERCIAL IN CONFIDENCE

Page 26 of 81

FUJ00098223

FUJ00098223
ICL Pathway Host Applications Database Design and Ref: TD/STD/0001
Interface Standards VeEmh Bl
Date: 29/4/99
Property Description Example

Table Display only. The name of the table or CARD EXCPTNS

view for which the columns are to be

defined
Name The name of the column APPL_EXCPTNS_CODE
Sequence The create sequence of the column within | 8

the table, view
Datatype The standard Oracle datatype for the VARCHAR2

column
Average Length The average length of data contained in 7

this column
Maximum Length The maximum length of the data that the | 7

column can contain
Optional? Indicates whether the column can contain | TRUE

null values
Description A brief description of the column. Code identifier of the exception

4.4.5 OTHER OBJECTS SUBORDINATE TO TABLES AND VIEWS

For every table specified for an application, there are likely to be subordinate objects
other than columns, which, if they exist, must also be specified if the table is to be
defined fully. These include primary and foreign key constraints, and synonyms.
These objects are not described fully here as Pathway has no special requirements for
their definition.

4.5 SCHEMA GENERATION

If the application is Oracle-based, the SQL DDL for the application must be generated
directly from the Designer/2000 repository. This is necessary to guarantee the integrity
of the data definitions used within the application’s schema.

4.6 DIAGRAMS

A data diagram for an application must be drawn within the repository using the Data
Diagrammer toolset.

4.7 USER DEFINITION

Every category of Oracle user that can have access to an application must be defined
within the repository using the Oracle Database Users object type. Within this
definition, all the database objects to which the user has been granted access
permissions must be defined using the Database Object Grants property. The
information inserted here must match that defined in the application’s associated
Access Control Matrix (see section 15.1).

If a user is to be granted any specific system privileges, these must be specified in the
repository using the System Privilege Grants property.

COMMERCIAL IN CONFIDENCE Page 27 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

5. APPLICATION CONTROL

5.1 OVERVIEW OF AN APPLICATION’S FRAMEWORK TABLES

Although each of the host applications implemented by Pathway satisfies a discrete
business requirement, the overall structure of each of these applications is
fundamentally the same, in that they have broadly similar requirements for active
support, auditing, and exception handling. To simplify the support and maintenance
tasks, it is therefore logical that each application should use the same basic
mechanisms for controlling how the application operates. To achieve this each host
application must have defined within it a common set of tables which are specifically
designed to support this.

These tables fall into three categories
o Those that control the operation of the application.

e Those that contain audit and archive data. These are defined in more detail in
section 6.

e Those that control exception handling. These are defined in more detail in section
8.

These tables are illustrated in the diagram below.

COMMERCIAL IN CONFIDENCE Page 28 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

Application_Parameters

Contains all the parameters
necessary for the successful
operation of the application

Action_Audit_Trails File_Audit_Trails

Contains rows for all actions
involved in loading and unloading
filesinto and out of the application

Contains a row for every
unplanned change made to
application data

Exception_Codes Process_Audit_Trails Archived_Tables
Coptajns bl for.every Saeenion A row is written to this table at the Contains a row for every table
which could conceivably occur e e :

ithin th . beginning and end of every process which is to be archived from the
i he dpphicahon which runs within the application database

: T |

| | I

I | I

AN * *
ModuleX Excptns Archive Events

Contains a row for every A row is written to this table
unexpected exception condition every time an archive is
which is encountered performed

Figure 1- An Application's Framework Tables

All applications require an Application Parameters table, a Process Audit Trails
table and an Exception Codes table. If ad hoc access to the application’s data is
allowed, there must also be an Action Audit Trails table; if files are loaded into or
unloaded out of the database, there must be a File Audit Trails table, and if archiving
is required, Archived Tables and Archive Events tables must be defined. A
ModuleX Excptns table also needs to be defined for every module, or group of related
modules, which could conceivably fail for any reason.

5.2 OPERATIONAL PARAMETERS

5.21 SYSTEM PARAMETERS

System parameters define how a database operates. They exist within a single table
within the database called System Parameters. This table has a public synonym
applied to it enabling all users to select records from it.

The table below defines the System Parameters table.

COMMERCIAL IN CONFIDENCE Page 29 of 81

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001
Interface Standards VeEmh Bl

Date: 29/4/99

FUJ00098223
FUJ00098223

System_Parameters

Column name

Null?

Datatype

Description

Parameter Name

varchar2(30)

The name of the parameter

Primary Key

Parameter_Type

varchar2(1)

The datatype of the parameter.

C Character string

D Date in the format:
DDMMYYYY HH:MM
(where HH:MM is optional)

N Number

S SQL Script

Parameter Date

date

Contains the value of the parameter if
Parameter_Type is D.

Parameter Number

number

Contains the value of the parameter if
Parameter Type is N.

Parameter Text

Y

varchar2(1500)

Contains the value of the parameter if
Parameter_Type is C or S.

Parameter Desc

Y

varchar2(50)

A description of the parameter

Examples of the types of parameters which may be defined in this table are;

¢ system directory locations;

o table STORAGE values for dynamic SQL CTAS scripts;

o the degree of parallelism to be used in parallel hints. This assumes that dynamic
SQL is to all hints to be configured at run-time;

e Dbackup/recovery data.

5.2.2 APPLICATION PARAMETERS

Application parameters define how a particular application operates. There is one of
these tables for each application running on the database. The table has the name
AAA Application Parameters, where AAA is the application name. It exists within
the application user’s schema and is defined in exactly the same way as the
System Parameters defined above.

Examples of the types of parameters which may be defined in this table are

o default directory locations for files to be loaded or unloaded into or out of the

database;

e processing dates;

e maximum and minimum values to be used in application processes;

¢ index creation scripts;

e retention periods;

o rollback segments to use for specific processes.

COMMERCIAL IN CONFIDENCE Page 30 of

81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

5.2.3 UPDATING PARAMETERS

A standard method must be provided to allow systems administrators to amend values
within the system and application parameters tables. Whatever method is chosen to
achieve this, it is essential that, as well as updating the appropriate tables(s), it ensures
that a record of the change is written to a log table within the database. This table is
called Action Audit Trails and is described fully in section 7.2.5.

5.3 PUBLIC SYNONYMS

Public synonyms must not be created for any objects that are contained within an
application’s schema. Although the provision of public synonyms for an application’s
objects simplifies the access of those objects from users that are used for support, their
existence prevents multiple applications from defining objects with the same name,
and thus prevents them from running in the same database instance.

COMMERCIAL IN CONFIDENCE Page 31 of 81

FUJ00098223

FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

6. UNPLANNED ACCESS TO A LIVE DATABASE

6.1 REQUIREMENT FOR STRUCTURED ACCESS

In an ideal world in which all applications are designed perfectly and the database
never fails, it would not be necessary for support or operations staff ever to have
unplanned access to a live database. This, however, is a forlorn aim. Even in the most
well designed of systems, support staff need to access the database to investigate
exceptions that have been reported by applications, to follow up on errors reported by
the RDBMS, or to amend application data corrupted by incorrect code or by invalid
data input from external systems.

In an environment where a database does not have associated stringent availability,
integrity, security and auditability requirements, it is often acceptable for this type of
support to be undertaken using ad hoc tools such as sql*plus together with a library of
scripts which most database administrators have in their personal toolboxes.

In that sort of environment, it has to be accepted that an ill-advised action by a
member of the support staff might result in impaired performance or even corruption
of live data. It is a risk which can be chosen to be taken by an organisation. It is not
however, a risk which can be taken by Pathway, upon whom swingeing financial
penalties are applied when SLAs are missed.

Full details of Pathway’s policy for access control can be found in ref. [2].

6.2 DISCOVERER FOR AD HOC ENQUIRIES

Within Pathway, the generic requirement to perform ad hoc enquiries on a database is
not only limited to applications and database support staff. Auditors and fraud
investigators may also need to enquire on a database on an ad hoc basis. These
different classes of people all have their own requirements for accessing the data, each
of which could be satisfied by the provision of a number of bespoke enquiry
functions. This solution, however, would be difficult to implement and would be
prohibitively expensive because of the large number and diversity of the enquiries
involved.

The ad hoc enquiry requirement is therefore satisfied by the provision of a generic tool
which is designed specifically for the purpose. For Pathway’s host applications, this
tool is Oracle’s Discoverer product.

Discoverer has a two layer architecture. There is a meta layer which runs on the server
that provides a logical view of the data to be presented to the client, and there is a
client layer which runs on the PC that presents the data in the format required by the
end-user.

One of the main advantages of using Discoverer is that access to data within an
application can be controlled. It is, for instance, possible to prevent end-users from
doing enquiries which will tie up the server for long periods of time when important
live processes are being run.

COMMERCIAL IN CONFIDENCE Page 32 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

6.3 AD HOC UPDATING OF NON-FUNCTIONAL DATA

6.3.1 FORM BASED UPDATING

6.3.1.1 UPDATING APPLICATION PARAMETERS

There should be many fewer reasons for updating data within a database on an ad hoc
basis than there are for enquiring upon it. If this is not the case, then it is probably
because the functional implementation of the application is incomplete. The only data
which should have to be updated on an ad hoc basis are records within the
Application Parameters table, or within other control tables as a consequence of
manual recovery actions being taken.

It is obviously more important than for enquiries for this type of access to be closely
controlled. It is essential therefore that a change to Application Parameters, for
example, is properly authorised, is validated and is audited. To do this it is
recommended that a bespoke generic screen-based form is developed which will
satisfy all these requirements.

The simplest method of achieving this is to use an Oracle Developer/2000 form. A
typical screen to amend the Application Parameters table might appear as below.

/ Amendment of Application Parameters \
Amender’s Name : | | Authoriser’s Name : | |
Parameter Name : | |
Old Parameter Value : | |

New Parameter Value : | |

Reason for Change : | |

- /

Figure 2 - Form for Amending Application Parameters

This form would not only update a record in the Application Parameters table. It
would also cause a record to be written to the Action Audit Trails table. This audit
record would record the name of the person making the change, the name of the
person authorising the change and a timestamp, as well as the contents of the record
before and after the change.

COMMERCIAL IN CONFIDENCE Page 33 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

Where feasible, the form should also attempt to validate the value of the new
parameter submitted, though it is accepted that this would be difficult for a generic
form such as that described above.

6.3.1.2 AUTHORISATION

Unless there are particular requirements for stricter security for an application, it is not
expected that the authorisation process will involve any checks being made upon the
value entered in the Authoriser’s Name field. However, if the security requirements
for a particular application are more stringent, the process could be enhanced to
enforce two person working by requiring the database server to validate the
authoriser’s name against an application table held on the database. The form could
also be extended to require passwords to be input by both the amender and the
authoriser. These would also be matched against encrypted passwords held on the
database.

6.3.2 UNPREDICTABLE AD HOC UPDATES

6.3.2.1 BATCH SCRIPTS

Although predefined forms should be provided for performing all predictable updating
of data within an application, there are inevitably situations where data has to be
amended unexpectedly and in an unpredictable manner, possibly as a result of
database corruption. When this happens it is more important than ever for the changes
that are made to be:

a) fully tested prior to application on the live database, and;

b) fully audited when applied to the live database.

The procedure for making this type of change is as follows:

1. Assess the changes that need to be made by querying the live database.

2. Write the script to make the changes required, ensuring that it inserts an audit
record into the Action Audit Trails table for each record amended.

3. Test the script on a test database.

4. Run the script on the live database as a batch process.

6.3.2.2 EXAMPLE AD HOC UPDATE SCRIPT

Below is an example of a simple ad hoc script to delete a record from the
XXX FILE REGISTER table.

Doc
Name: scl110998.sqgl
Author: John Doe
Date written: 11/09/98
PinICL No: 0099999
Description:
This script removes from the xxx file register table the record
corresponding to the failed file described in PinICL 99999.
#

INSERT INTO action audit trails
(action seq
,action tsmp

COMMERCIAL IN CONFIDENCE Page 34 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

,source type

,source id

,authoriser id

,table updated

,0ld detail

,new _detail

, reason)

SELECT
act_seq.NEXT VAL
, SYSDATE
; 'R
, 'Joe Support-Bloke'
,'Jim Authoriser-Bloke'
,'XXX_FILE_REGISTER'
X.file type [] *]&® |
x.file seq I
TO_CHAR(X.timestamp,'YYYYMMDD_HH24MISS') |
x.file status
,NULL
,'"To fix failure as describe in PinICL 99999'

FROM xxx file register x

WHERE file type = 'C' AND

file seq 1234;

DELETE
FROM xxx file register
WHERE file type = 'C' AND

file seq = 1234;

COMMIT;

COMMERCIAL IN CONFIDENCE Page 35 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

7. AUDIT AND ARCHIVING

7.1 AN OVERVIEW OF AUDIT AND ARCHIVE

Audit and archive are words whose meanings have been blurred in recent years as
different people have come to use them to mean different things. It is therefore worth
starting this section with some clarification.

Audit.

The dictionary definition of the word is “the official scrutiny of accounts”. In database
terms, however, it has come to have a number of different meanings:

e As an abbreviation for an audit trail. An audit trail in this context is a track of user
database activities and log violations. It provides evidence of unauthorised
additions or deletions in a table, row or column and unsuccessful access attempts.

e To describe data which has exceeded its retention period on the database, and has
been archived to off-line media for future scrutiny by auditors.

e As an abbreviation for an audit track. This is a term used to describe the
traceability of items of data through the various components of an integrated
computer environment.

Within this document, audit is taken to mean audit trail as described in the first
description above.

Most RDBMSs provide the ability to collect this type of audit information, and to
ensure that the logs so produced are secure. The problem with these default audit trails
is that all too frequently they either provide too much information which wastes disc
space and can impact on performance, or they provide insufficient information to
satisfy the requirements of both audit and database support who would like to use the
information to trace errors.

To fill the gap, it is therefore necessary for a generic process audit facility to be
provided which satisfies the specific requirements of the applications which make use
of the database.

Archive.

The dictionary definition of an archive is “a collection of documents or records”.
Again, in database terms, the term has been adopted to mean a number of entirely
different things.

e An archive is most commonly used to mean a collection of historical data which
has been offloaded from a database. The format of the archive files is usually such
that the data within them can be restored into a database or schema other than the
one from which it was offloaded. An archive is usually held on magnetic tape,
though increasingly nowadays magneto optical CDs are used.

e In an Oracle environment, to describe the files produced by archiving the on-line
redo log file. The redo log contains before and after images of database updates,
inserts and deletes; the archive files are the off-line components of this redo log.

COMMERCIAL IN CONFIDENCE Page 36 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

e As an alternative word for a backup. A backup is a copy of all or part of a database
taken so that the database can be recovered without the loss of data should a
hardware or software error occur. In general, backups are retained for short periods
of time only and contain data in such a format that it can only be restored back into
a database which is physically identical to that from which it was copied. Using the
term archive to mean a backup is wrong.

e To describe audit data, as opposed to application data, which has been offloaded
from the database to long term storage media.

Within this document, archive is taken to mean historical data which has been
offloaded from the database, as in the first definition above. This description is also
equivalent to the second definition of audit, though an archive is usually kept for more
reasons than just to satisfy the requirements of auditors. It is also kept:

e as a source of data for the ad hoc analysis of business trends where an organisation
decides not to keep such data in an expensive data warehouse;

e as a record of information for support purposes. An example of where this would
be useful would be in an investigation to find the origin of a logical inconsistency
which had appeared within the database. By trawling through the archive data,
support staff could pinpoint exactly when, and possibly how, the corruption
occurred.

7.2 AUDIT TRAILS

7.21 TYPES OF AUDIT DATA

The audit trails provided by the RDBMSs are primarily there as sources of
information to aid investigations into suspicious activity, and to provide DBAs with
statistical information on specific database activities. Examples of this would be
information on how frequently specific tables are updated, or how many concurrent
users connect at peak times.

What they are not so good at doing is providing non-generic information on the
processing which occurs within specific applications. For instance an application
might contain half a dozen batch modules which run daily, and which process
different amounts of data each day depending on what on-line activity has been
performed during the day.

What would be more interesting for the people who support this application would be
to know how many records of a specific type were processed, how long each process
took and whether any exceptions were encountered. These are obviously application
specific requirements which can not be met by the RDBMS’s own audit facility.

To provide this information, it is therefore necessary for an application to include
within its schema tables that contain audit trails of:

o all processes that have been run;

e all files that have been loaded into or unloaded out of the application’s schema,
and;

COMMERCIAL IN CONFIDENCE Page 37 of 81

FUJ00098223

FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

o all actions that have been taken by people to change data within the application’s
schema.

Within Pathway, it is important that a common approach is taken to recording this
information. To achieve this all applications must make use of audit tables which have
a common structure. These table structures are described in the following sections.

7.2.2 PROCESS AUDIT TRAILS

The process audit trails table within an application is a historical record of what
modules have been run and what were the results of their running. It is very important
to discriminate between this type of table and a table which is used to control the
actions of a module.

Control tables within an application are frequently used to hold checkpoint
information to enable a module to pick up from where it left off after a system crash
or other failure. The records within these tables are therefore frequently updated with
status information. The records within a Process Audit Trails table on the other hand
must never be updated as the table is there to provide a historical record of the
business functions which have been executed. Updating the records within it would
compromise the integrity of the audit trail itself.

The table to contain the audit trails of the processes within the Pathway domain is
called Process Audit Trails. 1t is defined in the schema of the application in which
the processes run and must be written to in the manner described below.

Records are written to the Process Audit Trails table by batch modules and daemon
processes. Help Desk modules do not write to it: their activities are audited via call
logging and event recording.

Each batch module or daemon must write and commit a record to the
Process Audit Trails table as its first and as its last action. Where a module performs
multiple steps, each of which is completing a distinct business task, such as
“validation of payments against cardholders” the module should additionally write a
record at the end of each of these tasks. For instance, if a validation module performed
three distinct validation tasks, then a record should be written to the
Process Audit Trails table after each of them.

Audit details are written in a consistent format to allow for their easy analysis by
query tools. The information gathered can then be analysed to provide information on
resource usage and to monitor database growth.

The format of the Process Audit Trails table should be as defined below.

Process Audit Trails

Column name Null? Datatype Description

Process_Seq N number(8) A unique sequence number identifying the

process. This sequence number is always
incremented when a process is started,
even if it is a restart following a failure.

Primary Key Component 1

COMMERCIAL IN CONFIDENCE Page 38 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001
Interface Standards VeEmh Bl

Date: 29/4/99

Process Audit Trails

Column name

Null?

Datatype

Description

Process_Entry_Seq

Number(4)

A sequence number, starting from 1 for
each Process_Seq, which uniquely
identifies the audit entry within the
process.

Primary Key Component 2

Module Id

Varchar2(7)

Module running the process

Version No

Number(3)

Version number of the module specified
in Module Id

Process_Tsmp

Date

Date and time details written to table

PID

<

Number(10)

The Operating System Process Id

Element_Type

Varchar2(2)

This defines the type of element being
processed, the count of which is in the
Elements_Count attribute. These can be
application specific, but must be unique
and centrally registered in Pathway.

For example,
‘RC’ Records in a file read or written.

‘CT’ Count of rows from a table which is
scanned.

Element_Count

Number(12)

A count of the elements, the type of which
is defined in the Element_Type attribute.

Daemon_Alert_Count

Number(8)

If the module is a daemon that reacts to
database alerts, this is a count of the
number of times the daemon was alerted.

Daemon_Idle_Count

Number(8)

If the module is a daemon that reacts to
database alerts, this is a count of the
number of times the daemon was alerted,
but found no work to do.

Daemon_Poll_Time

Number(4)

If the module is a daemon that reacts to
database alerts, the frequency at which it
polls the target table as a precaution
against missing any alerts.

Daemon_Delay_Time

Number(4)

If the module is a daemon that reacts to
database alerts, the time the daemon waits
in between checking for alerts. The
daemon_delay_time should divide exactly
into daemon_poll_time (typically 3:1).

Further_Info_Type

Varchar2(2)

This defines the type of further
information provided in the Further Info
attribute.

For example:

‘IF* Full UNIX file name of incoming
file.

‘OF’ Full UNIX file name of outgoing
file.

COMMERCIAL IN CONFIDENCE

Page 39 of 81

FUJ00098223

FUJ00098223
ICL Pathway Host Applications Database Design and Ref: TD/STD/0001
Interface Standards VeEmh Bl
Date: 29/4/99
Process Audit Trails
Column name Null? Datatype Description
Further_Info Y varchar2(255) The further information as described in

the Further Info Type attribute.

The definition of the Process Audit Trails table may also be extended to include
statistical information specific to the RDBMS used by the application.

For Oracle applications these additional fields are defined below.

Column name Null? Datatype Description

Oracle Sid Y Number The database instance ID for the session,
part one.

Oracle Serial Y Number The database instance ID for the session,
part two.

Physical Reads Y Number The number of physical read 10’s
requested to fetch data from disk.

Block Gets Y Number The number of database blocks read by
the process since the session started.

Consistent Gets Y Number

Block Changes Y Number The number of database blocks written.

Consistent Changes Y Number

7.2.3 FILE AUDIT TRAILS

All the actions involved in loading data into a database from non-database files, and
unloading data from the database to non-database files, are registered in a table within
the database. This is necessary for three reasons:

¢ to provide information to support staff about the loading and unloading of the data;

e to satisfy audit requirements, and;

e to support any subsequent archiving of the files.

Non-database files which are used for the loading and unloading of data are all
registered within a table called File Audit Trails. A single table is used for all the
types of all the files which are transferred into and out of the database.

File Audit Trails

Column name Null? Datatype Description

File Event_Seq N number(8) A unique sequence number identifying the
file event.
Primary Key

Input_Output N varchar2(1) I The file is input into the application
O The file is output from the application

Remote_Application N varchar2(8) The identifier of the remote application to

- which the file is sent or from which the file

is received.

COMMERCIAL IN CONFIDENCE

Page 40 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001
Interface Standards VeEmh Bl

Date: 29/4/99

File Audit Trails

Column name

Null?

Datatype

Description

File_Type

varchar2(3)

A code identifying the type of file loaded or
unloaded

Filename

varchar2(30)

The terminal name of the file as it is created
in the specified File Directory

File Status

varchar2(1)

File allocated to load process

File processing complete

Delivery of outgoing file complete
File has been rejected

File is being post-processed
Arrival of new file for loading detected,
or new file for unloading created
File is being processed

File ready to transfer

File is being pre-processed

File has been archived

ZITZmHogop

M <R

Status_Change Tsmp

Date

Time of status change as specified in
File_Status attribute

File_Directory

Varchar2(80)

The name of the directory which contains
the file.

Record Count

Number(10)

A count of the number of records in the file

Average Record Size

Number(6)

The average size of the data records in the

file

Although not declared as such, it is worth noting that the logical primary key of the
table is Remote Application / File Type / Filename / File Status.

7.2.4 AUDITING OF INTER-DATABASE TRANSFERS OF DATA

If the interface between applications or databases is implemented by means of
database links as described in section 9, rather than by the exchange of files, the
auditing requirements of the interface are satisfied by the information which is written
to the Application Accesses table in the interface user as specified in section 9.5.5.

7.2.5 ACTION AUDIT TRAILS

It is frequently necessary for Systems Administrators to change the way the database
or an application operates. This is usually done by amending the operational
parameters of the system or application as described in section 5.1. For security,
auditing and support reasons, it is important that any changes of this type are
adequately logged so that anyone coming in afterwards can see what changes have
been made, why they were made and when they were made.

Any changes to the operational parameters, whether they are made to the systems or
applications parameters tables, or to other non-generic parameters tables, must be
written to the Action Audit Trails table. One record is written for each record
changed.

The format of this table is defined below.

COMMERCIAL IN CONFIDENCE Page 41 of 81

ICL Pathway

Host Applications Database Design and
Interface Standards

Ref:
Version: 3.0
Date: 29/4/99

FUJ00098223

FUJ00098223

TD/STD/0001

Action Audit Trails

Column name

Null?

Datatype

Description

Action_Seq

Number(8)

A unique sequence number identifying the
action.

Primary Key

Action_Tsmp

Date

Date and time of the action

Source Type

Varchar2(1)

The type of source making the change.

M Application Module
S Support staff interactively
B Batch script

Source Id

Varchar2(30)

The name of the source making the change.
If source_type is “M’, this is the name of the
module; if ‘S’ or ‘B’ it is the name or
identifier of the person making the change.

Authoriser_Id

Varchar2(30)

If source_type is ‘S’ or ‘B’ this is the name
or identity of the person who authorised the
change.

Table Updated

Varchar2(30)

The full name of the table updated (e.g.
Application_Parameters)

0Old_Detail

varchar2(1500)

Contains the complete record as it was
before the change is made in the “trimmed”
format as specified in section 7.4.4 4.
Default values are assumed for all other
format directives specified in section
7.44.4.

=NULL if a record is inserted.

New_Detail

varchar2(1500)

Contains the complete record as it is after
the change has been made in the “trimmed”
format as specified in section 7.4.4.4.
Default values are assumed for all other
format directives specified in section
7.44.4.

=NULL if a record is deleted

Reason

varchar2(800)

The reason for making the change as
described by the amender.

7.3 ARCHIVE DATA

Archive data is data that has been offloaded from a production database into an off-
line media store because it is no longer of current interest to the application which
uses that database. Although often confused with backup data, archive data has a
number of features which set it apart from backup data and which require it to be
treated in an entirely different manner. The table below summarises these differences.

Feature Archive Data Backup Data

Data Retention Usually measured in years Days, or at most weeks.

Retrieval requirements Data must be capable of being

restored into any type of database

Data only required to be restored
into the database from which it

COMMERCIAL IN CONFIDENCE Page 42 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001
Interface Standards

Version: 3.0
Date: 29/4/99

on any type of machine.

was archived, or one identical to
it.

End User Data Access

Usually not known

Only via standard RDBMS or

Requirements operating system modules.

Volume Many gigabytes to many terabytes Many megabytes to many
gigabytes

Media Usually Tape or CD Either disc or fast tape

As a consequence of these distinctive features, archive data must be written in such a
way that it contains within it the data dictionary definitions of the data itself. The data
archived from the PAS/CMS database is currently archived in such a format, and
therefore, for consistency, this is the basis of the mechanism which will be used for all
other archive data produced by the host system applications.

7.4 THE MECHANISM FOR ARCHIVING DATA FROM A DATABASE

7.41 ARCHIVE CONTROL

The archiving of data from the database is a two-phase process. The first phase
involves copying the archive data from the database to files within a UNIX filesystem
directory. The second phase involves copying these filesystem files to a tape library
using the ESBM backup manager product.

Archive control tables within the database from which the data is archived control the
first phase of the process. There are two of these tables; one of which holds the details
of the tables to be archived; the other, the details of each archive event. These tables

are defined as follows:

Archived Tables
Column name Null? Datatype Description
Application_Alias N varchar2(3) The alias for the application as described in
3.2,
Primary Key Component 1
Table_Alias N varchar2(3) The alias for the table as described in 3.4.3.
Primary Key Component 2

COMMERCIAL IN CONFIDENCE

Page 43 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001
Interface Standards VeEmh Bl

Date: 29/4/99

Archived Tables

Column name

Null?

Datatype

Description

Archive_Type

Varchar2(2)

FK Foreign Key archive. All records
having logical foreign keys
referencing primary keys of records
which have been deleted are archived.

FT Full table archive. All records in the
table are archived.

RP All records which are older than the
period specified in the
Retention_Period attribute are
archived.

Al All data with the attribute
Actioned_Ind set to Y are archived.
An actioned_ind column must exist on
the archived table against which the
comparison can be made.

Purge After Archive

Varchar2(1)

Y The archived records are removed
from the database table after
archiving.

N The archived records are not removed
from the database table after
archiving.

Directory

Varchar2(80)

The full name of the UNIX directory to
which the archive file is to be written.

Retention_Period

Number(5)

Only used if Archive Type = RP.

The number of days after which records
within the table become candidates for
archiving. A timestamp column must exist
on the table to be archived against which
this attribute can be compared.

Archive_Threshold

Number(2)

This attribute is used by the archive process
to determine whether it is worth performing
the archive. After a pre-scan of the table, if
it is found that the percentage of records that
would be archived from the table is below
this threshold, then the archive is not
performed.

Archive Events

Column name

Null?

Datatype

Description

Application_Alias

varchar2(3)

The alias for the application as described in
3.2,

Primary Key Component 1

Table Alias

varchar2(3)

The alias for the table as described in 3.4.3.

Primary Key Component 2

COMMERCIAL IN CONFIDENCE

Page 44 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001
Interface Standards VeEmh Bl

Date: 29/4/99

Archive Events
Column name Null? Datatype Description
Archive_Seq N number(8) A sequence number of the archive event for
the table specified in Table_Alias
Primary Key Component 3
Archive_Status N varchar2(1) P Archive in progress
S Archive finished successfully
F Archive failed
Creation_Tsmp N Date Time of the archive file’s creation
Status_Change Tsmp N Date Time of status change as specified in
Archive_Status attribute
Archive File Name N Varchar2(110) Full name of the file produced by the
archive event
Record Count Y Number(10) A count of the number of records archived
Average Record_Size |Y Number(6) The average size of the data records
archived

7.4.2 NAMING OF THE ARCHIVE FILE

As with all file names, it is important that the names generated for the archive files by
the first stage of the archiving process are meaningful and easy to understand. A
standard naming convention is therefore used.

This convention specifies that the format of the filename within the archive directory
must be as follows:

AAAXXXYYYYMMDDNNNN.arc

AAA The application identifier as specified in section 3.2;

XXX The alias of the table archived as specified in section 3.4.3;

YYYYMMDD The date of the archive;

NNNN The sequence number of the archive within the archive date. If
only one file is ever created on one day, this will always be 0001;

.arc Standard suffix for all archive files once the archive process is
complete. Whilst the archive is in process, the suffix used is
“tmp’.

7.4.3 THE ARCHIVE PROCESS

Before the archiving process is started it is strongly recommended that the table to be
archived and any dependent tables are backed up.

The archive process actively uses the archive control tables. The first action
performed by the archive process is to examine the relevant record in the
Archived Tables control table to see what sort of archive is required. The actions
performed during the archive are then dependent on the Archive Type.

o Ifthe archive type is FT, the archive process immediately goes ahead and archives
the whole table. If then the Purge After Delete parameter is specified, the table
from which the data was archived has all records within it removed. The quickest
means of achieving this is by using the TRUNCATE command.

COMMERCIAL IN CONFIDENCE Page 45 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

e If'the archive_type is RP or Al and the Archive Threshold attribute is not null, a
pre-scan of the whole table is first performed to see what percentage of the table
would be deleted by the archive process. If this value turns out to be less than the
value specified in the Archive Threshold attribute, then the archive is aborted as it
wouldn’t be worth doing.

The archive is then performed according to the criteria specified in attributes of the
Archive Tables record. On completion, if the Purge After Delete parameter is
specified, the archived records are removed from the table using either the delete
command, or if the table is very large and there are many records to remove, using
the parallel Create Table As Select construct.

When designing an archive process that includes a purge phase, it is important to
consider whether the purging of records in the archived table requires any further
purging of records in other tables. This may be required if there are logical master-
detail links in existence which are not implemented physically by foreign key
constraints.

7.4.4 ARCHIVE FILE FORMAT

7.4.4.1 ARCHIVE FILE STRUCTURE

The files produced by the archiving processes must all contain within them full
definitions of the tables from which they are archived, as held within the database’s
data dictionary. This is necessary so that the file can in the future be read back into a
database which has no knowledge of the table from which the data was archived, or,
indeed, which may be of a completely different type.

The archive file is therefore in two parts. The first part contains the data mapping
directives as extracted from the Oracle data dictionary view: user tab columns. The
second part contains the data itself.

Each record in the file is terminated by a “carriage return” character. At the end of the
file there is optionally also a trailer directive.

7.4.4.2 ARCHIVE FILE DIRECTIVES

The data mapping directives take the form of a number of records in the file, each of
which has the format: <directive> followed by the directive itself. Each of these
directives must start on a new line.

The directives are defined in the table below.

Directive Meaning Notes

<col> Column details At least one <col> directive
must be included

<date> Date and timestamp when file produced. Directive must be included.
Format is ‘ddmmyyyy_hhmmss’ The 24hour clock must be used
<end> End of directives Must be the last directive

before the start of the data

<map> Start of record definition Must be first directive

COMMERCIAL IN CONFIDENCE Page 46 of 81

ICL Pathway

Host Applications Database Design and

Interface Standards

Version: 3.0

FUJ00098223
FUJ00098223

Ref: TD/STD/0001

Date: 29/4/99
Directive Meaning Notes
<notrim> Output data is not trimmed. This means: Must not be specified if <trim>
- text has trailing spaces padded to full column | is declared.
width as specified in column directive.
- numbers have leading zeroes padded to full
column width as specified in column
directive
<null> NULL value identification for NULL values Optional; default is “*’. Only
used for untrimmed data
<separator> Separation character(s) used if data trimmed Optional; default is ‘|’
<sign> If output data is not trimmed, and this directive | Optional; default is not to
is declared, then all numeric fields include a include a leading character
leading character position to accommodate the | position; all numbers are then
+ or - sign treated as positive
<table> Name of the table name from which the data Directive must be included.
was archived This name should be in the
format schema.table_name.
(For PAS/CMS, the “schema.”
part of the name is omitted.)
<trailer> After all the data records have been written, If written, this must be the last
this directive can optionally be written to record in the file
designate the end of the archive file
<trim> Output data is trimmed. This means: Must not be specified if
- text has trailing spaces removed <notrim> is declared.
- numbers have leading zeros removed Defalt-value it neither <tine
nor <notrim> is declared.

7.4.4.3 COLUMN MAPPING

Within the archive file directives there is a separate directive for each column of the

table to be archived.

The column directive has the structure: <col>column_name|N|datatype where:

Column_name is the name of the column as held in the database’s data dictionary;

N

Datatype

defines whether a NULL value is allowed for that column on the

database. N means the column can not be null; the absence of any

value signifies that it can;

is the datatype defined for that column on the database. This may be

abbreviated to the datatype’s first character.

The separator in the column directive is always ‘|’ regardless of the value given to the
<separator> directive.

7.4.44 TRIMMED AND UNTRIMMED DATA

The <notrim> and <trim> directives define whether the data records are written as
fixed length records, with each field in a set position, or as variable length records
with each field being separated by the character defined in the <separator> directive.

COMMERCIAL IN CONFIDENCE

Page 47 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

Archive files are normally stored in the variable length, trimmed format as this
ordinarily saves on disc space. The untrimmed format can, however, save disc space
over the trimmed format if the data archived is all packed out to their maximum field
sizes. This is because the field separator characters are not included in the untrimmed
data.

The rules for storing untrimmed and trimmed data are given below.

Untrimmed data output rules

If the column datatype is character then the column value is output with trailing
spaces padded out to the full column width. If the column value is NULL then the
<null> character string is output and again trailing spaces added.

If the column datatype is numeric then the column value is output with leading
zeros padded out to the full column width. Any decimal part is always output to the
maximum number of digits specified (including, of course, the decimal point). If
the column value is NULL then the <null> character string is output and again
trailing spaces added.

If the column datatype is date then the column value is as ‘ddmmyyyy hhmmss’.
The time component is always output as it cannot be recognised whether or not the
column is a date or a timestamp datatype. If the column value is NULL then the
<null> character string is output and again trailing spaces added

Trimmed data output rules

If the column datatype is character and not allowed to be null then, if the field
contains all spaces, one space is output, otherwise the character string is output as it
is held on the database, with no trailing spaces.

If the column datatype is numeric and not allowed to be null then, if the value of
the field is zero, one zero is output, otherwise the number is output as it is held on
the database, with no leading zeros.

If the column datatype is date and not allowed to be null then the field is output in
the same format as it would were it to be untrimmed.

If the column can be NULL, and on the database the field contains NULL, then no
characters are output for that field.

Note that the trimmed format is also used for records written to the detail columns
within the Action Audit Trails table and the ModuleX Excptns tables.

COMMERCIAL IN CONFIDENCE Page 48 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

7.4.4.5 ARCHIVE FILE EXAMPLE

Below is an example of the archive directives that might be used for the Card Events
table on the PAS/CMS database.

<map>

<table>CARD EVENTS
<date>21021998 101227

<trim>

<separator>|

<col>EVENT_ SEQ|N|NUMBER (16)
<col>EVENT_ TSMP| | DATE
<col>BATCH ID|N|NUMBER(10)
<col>SOURCE_IDI1|N|VARCHAR2Z (30)
<col>SOURCE_IDZ |N|VARCHARZ (30)
<col>STATUS CODE |N|VARCHARZ (3)
<col>CALL ID|N|NUMBER(16)
<col>EVENT_ TYPE| |NUMBER (2)
<col>EVENT_ SOURCE| | VARCHARZ (1)
<col>SOURCE DESC | |NUMBER (2)
<col>PRIMARY AC NO| [NUMBER (16)
<col>CARD ISSUE NO| |NUMBER (3)
<end>

27101021998 085721 |50|Srcl|Src2|STP|113|AB|H|[1234567890123456]1
28101021998 08583151 |Src3|Src2|ORD|115|CD|H|XX[9876543210654321(10
<trailer>

7.4.5 FUTURE ACCESS OF ARCHIVED DATA

A successful archiving strategy must permit archived data to be accessed many
months or even years after it has been written. It is not practical therefore at the time
when the archiving strategy is being developed to be definitive about how that data is
to be accessed in the future when technology will surely have moved on and when
almost certainly better methods of accessing the data will be available.

7.5 ARCHIVING OF FILES USED FOR LOADING AND UNLOADING

7.5.1 CONTROL OF THE ARCHIVING OF NON-DATABASE FILES

There are frequently requirements to archive the non-database files which are used for
the loading or unloading of data to and from the database. As with the archiving of the
database tables, it is necessary here also to have control over what files have been
archived, when they were archived, and to where they have been archived. This
control information is retained in the database into which or from which the data is
loaded or unloaded. This information is all stored in the file register tables as
described in section 0.

COMMERCIAL IN CONFIDENCE Page 49 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

8. EXCEPTION HANDLING

8.1 EXCEPTION HANDLING PRINCIPLES

One of the ways of ensuring that an application functions successfully without the
deployment of a huge support effort is to design and build it using defensive coding
techniques. This means that the application is designed such that it can handle in a
controlled manner any sort of unexpected exception condition that could feasibly
occur.

Before going into detail about the handling of unexpected exception conditions, it is
first worth defining exactly what is meant by such an exception condition. This is best
done by example. The following are some examples of unexpected exception
conditions:

e Invalid data which has been erroneously input into the database. This might, for
example, be due to incorrect validation criteria being defined on a client form, or
to a file of records being directly loaded into a database on which pre-validation
had not been completely performed.

e Logical inconsistencies between database objects, such as may be encountered if a
foreign key dependency had not been implemented using a constraint for
performance reasons.

e The receipt of an error response from the RDBMS to a valid DML request.

What an exception condition is not is an expected business event such as the receipt
of an order for a customer who, unexpectedly, does not exist on the database. For
these business exception conditions, which are quite able to be predicted, the
application itself must be designed to cater for and, if necessary report on.

8.2 HANDLING UNEXPECTED EXCEPTION CONDITIONS

To simplify support of an application, it is important that all unexpected exception
conditions encountered in the Pathway environment, are handled in the same manner.
The following are a series of design principles which can be employed to achieve this.

o All SQL statements must be coded to take into account the possibility that the
statement may fail. This means that, not only should it do obvious things such as
checking the SQL code returned by the RDBMS, it should also actively check the
logical format of the data returned where this hasn’t been guaranteed by the
existence of check constraints on the records’ columns.

e If a SQL statement fails or produces unexpected results, a minimum of one record
must be written to an exceptions table as described below. If the SQL statement
encounters more than one row which is invalid, it should write a record to the
exceptions code for each invalid row.

COMMERCIAL IN CONFIDENCE Page 50 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

e Whenever a record is written to an exceptions table an alert should automatically
be raised to enable application support to react to the fault immediately. Within
Pathway, the alert is signalled using the BMC Patrol product.

o If the exception condition encountered is deemed by the application designer to be
serious enough for the module not to be allowed to continue, then the module
should roll back all uncommitted updates and abend gracefully to Maestro.

8.3 EXCEPTIONS TABLES

For each process for which exceptions could conceivably be encountered, an
exceptions table should be defined within the application’s schema. It is usually
impractical for there to be a single exceptions table for each and every module which
can access the database; however, it is similarly impractical for there to be just one
which is used by all modules within an application. In practice, a single exceptions
table would normally be used by a number of different modules, so long as they all do
broadly similar processing on broadly similar tables.

Each exceptions table must have a Patrol Knowledge Module associated with it that
signals an alert to a central console whenever one or more records get written to the
table.

The format of the table should be as defined below.

ModuleX Excptns (where ModuleX identifies the module(s))

Column name Null? Datatype Description

Process_Seq N number(8) The unique sequence number identifying
the process which produced this exception
report. As on Process Audit Trails (see
section 7.2.2).

Primary Key Component 1

Excptn_Seq N number(8) A sequence number identifying the
exception within Process_Seq.
Primary Key Component 2
Module Id N varchar2(7) Module encountering the failure
Excptn_Tsmp N date System timestamp of when the exception

was encountered.

Appl _Excptn_Code N varchar2(7) Application Exception Code (see below)

PID Y number(10) The Operating System Process Id

Dbms_Excptn_Code Y number(6) The RDBMS error code, if the exception
is caused by the RDBMS.

Excptn_Object Y varchar2(30) If this is a data error, the name of the table

or view in which the invalid record has
been encountered.

Excptn_Detail Y varchar2(800) The full invalid row in the trimmed format
specified in section 7.4.4 4.

COMMERCIAL IN CONFIDENCE Page 51 of 81

FUJ00098223

FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

In nearly all cases in which a record is written to an exceptions table, some action
needs to be taken, either by business support if it is an application fault, or by database
support if the problem is with the RDBMS, or maybe by both if the data within the
database turns out to be corrupt.

For all the applications in the Pathway environment, it is probably essential that this
action is taken as soon after an exception has been reported as possible. In many
cases, of course, the exception condition itself will have halted the module. However,
if corrupt data has been encountered by a module, this event in itself may not be
deemed sufficiently serious by the application designer to cause the module to fail.
For instance, if a million rows are to be processed, and a logical inconsistency is
detected in one of them, this is not necessarily serious enough to hold up the
processing of the rest of the rows. It is however a condition which needs to be
investigated as a matter of some urgency as it may be symptomatic of more
widespread corruption.

8.4 EXCEPTION CODES

Each application has its own unique range of exception codes that it uses for flagging
up unexpected exception conditions. These exception codes are all seven characters in
length and have a format of AAA9999, where AAA is the 3 character application alias
(see section 3.2), and 9999 uniquely identifies the exception within the application.

All the exception codes that a particular application can use are defined within that
application’s own schema in a table called Exception Codes.

The format of the table is defined below.

Exception_Codes

Column name Null? Datatype Description

Excptn_Code N varchar2(7) Application Exception Code in the format
AAA9999
Primary Key

Short_Excptn_Msg N varchar2(40) A short exception message suitable for
displaying on forms etc.

Full_Description Y varchar2(240) Full description of the exception

Action Y varchar2(240) Describes what user action is necessary to

resolve the exception

COMMERCIAL IN CONFIDENCE Page 52 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

9. COMMUNICATING BETWEEN APPLICATIONS

9.1 BACKGROUND

Most of the applications being developed as part of the Pathway programme are, at the
host layer, logically separate from one another. There are, however, numerous
requirements for data to be passed from one application to another.

The diagram in Figure 3 is a top-level DFD which illustrates the flow of data between
the host system applications at Release 2. This diagram will obviously become more
complex as more applications are introduced. It is therefore very important that this
increased complexity does not make the overall Pathway solution correspondingly
complex and unwieldy. Specifically, it is essential that when new applications are
added or changed, there is no requirement to re-test all the other components of the
system with which they interact.

To achieve this, it is necessary for applications to be designed using the principles
taken from the Object Oriented approach to software development. In particular, it is
essential that applications embrace encapsulation. In the domain of database building,
this means that the data and process implementation of one application must be
hidden from all other applications with which that application interacts. Applications
must only be allowed access to one another by means of well defined interfaces, each
of which must be documented in an Application Interface Specification.

The logical consequence of this is that a generic mechanism must be adopted within
Pathway which allows applications both to communicate with one another in an
efficient and straightforward manner and also to support fully the requirements of
encapsulation.

COMMERCIAL IN CONFIDENCE Page 53 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

(
B : c
T
F
R N
A

e
-

Figure 3 - DFD of Pathway’s Host Applications

COMMERCIAL IN CONFIDENCE Page 54 of 81

ICL Pathway

FUJ00098223

FUJ00098223

Ref: TD/STD/0001
Version: 3.0
Date: 29/4/99

Host Applications Database Design and
Interface Standards

There are a number of ways that this intra-application communication can be
implemented, all of which have both advantages and disadvantages. Up until Release

2, only two techniques, as described in the table below, had been used .

Technique

Description

Advantages

Disadvantages

Unloading /
Loading of flat
files.

Data is written from
Application A on
Database A to
UNIX flat files.
Application B then
reads these files
into Database B

Clean interface. No
dependency at all
between
applications.

No restrictions
imposed on how the
data is loaded into
the destination
database

Poor Performance

Complex to develop

Files have to be managed
and housekept

Recovery and Resilience
processes have to be written

Intra-Database

Direct Access
using SQL (i.e.
one application
directly accessing
another’s objects

using synonyms)

Application A and
Application B
physically exist in
the same database
and communicate
directly with one
another via SQL.

Excellent
Performance

Simple to develop
Recovery and
Resilience managed
by the database

Applications must exist in
the same database and can
not be moved to different
platforms

Applications are
intrinsically dependent on
one another. Changes to

one require re-testing of

the other

As can be seen from the table, the unloading/loading flat files is clean in OO terms,
but has performance, developmental and system management disadvantages; whilst
intra-database direct access, which is currently used for the interface between TPS and
RDMC, has none of the disadvantages of the first technique, but does not satisfy in
any way the requirements of encapsulation which are essential for Pathway.

If Pathway is to support the expansion in the number of host systems which is
currently envisaged, it is necessary for a third technique to be employed that has the
advantages of both the techniques described above, but none of the disadvantages.

9.2 ALTERNATIVE OPTIONS

9.21

There are two additional techniques over and above those defined in the previous
section which can be used to enable applications in different database to communicate
with one another. One is data replication, the other is data distribution.

REPLICATED DATA

With data replication, all updates to tables which are defined within a replication
schema on the remote database are automatically replicated to copies of those tables
on the local database by means of “snapshots” and by updates to those snapshots in
“snapshot logs” that are transferred from the remote database at predetermined
intervals. Replication can be a one-way process in which case it is called
asynchronous replication, or it can be allowed in both directions when it is called
symmetric replication.

The main advantages of replication are that:

e it uses the standard features of the RDBMS and therefore requires no special code
to be written. It is therefore relatively easy and inexpensive to implement.

COMMERCIAL IN CONFIDENCE Page 55 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

¢ One application is not dependent upon the availability of another.
The main disadvantages are that:

e Both databases have to use the same RDBMS.

e Performance of the data transfer is poor.

e Disc space for the replicated data has to be available at both local and remote sites.

e It is difficult for the remote site to know whether all local sites have received the
replicated data.

9.2.2 DISTRIBUTED DATA

In a distributed system, the data exists on only one database. If an application on
another database wants access to that data, it accesses it directly and transparently
using standard SQL. This transparency is achieved by the use of database links and
synonyms.

The advantages of data distribution are that:

e It can be configured to support encapsulation fully.

e By manually paralleling the access of data across the network, performance can be
optimised.

e As the data can be accessed directly, it is not necessary to hold a copy of the data
on the local database as well as on the remote one.

The main disadvantage is that:

e it requires the implementation of some additional schema objects and code in
order to control the environment.

¢ Both databases have to be running and available.

Although under exceptional conditions asynchronous replication could be used for
specific Pathway applications, it is expected that only database links and synonyms
used in the controlled manner described below will be used as a matter of course.

9.3 DATABASE LINKS AND SYNONYMS

Within an Oracle environment, it is relatively simple to configure applications so that
they transparently communicate with one another using standard SQL, even if the
remote application exists on a different database at a different location. To do this, one
first creates a database link, or "path", within the local application’s schema which
points to an object in the remote application’s schema. One then creates a synonym
for the remote object in the local application’s schema, which can then be referenced
as if it were the name of a local table. The local application can then use the synonym
to access that information without concern for where the data is actually stored.

Before Release 2, this technique had not been used within Pathway because it creates
inter-database and inter-application dependencies which are hard to manage.
Specifically these dependencies are:

1. Scheduling.
The remote database must be up and running, and not actively updating the data
required, when the local application requires to access the remote database.

COMMERCIAL IN CONFIDENCE Page 56 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

2. Data Retention.
Data has to be retained on the remote database until that data has successfully been
accessed by all distributed applications which have an interest in it. This is
particularly pertinent to the Pathway environment where most of the data is
transactional, and thus transient, in nature. If any of the applications were down for
an extended period of time, data may have to be kept on the remote database for
longer than its designed retention period, possibly resulting in tablespaces filling
up.

3. Testing
When testing applications, test versions of the distributed databases need to be

available to provide the remote data, thus increasing the complexity of the test
environment.

4. Transparency
There is a perception that the use of database links and synonyms means that both
the local and remote databases have to use the same RDBMS, which breaks the
rules of encapsulation whereby applications must not be required to know how
applications with which they communicate are implemented.

The first three of these dependencies are powerful arguments against the use of
database links, and they must all be countered if this technique is to be used in the
Pathway solution. This can be done, but only by the strict definition and enforcement
of application interface standards. Most of the remainder of this section is therefore
devoted to the provision of a generic standard which can be used in any situation.

The last of the dependencies numbered above, that the data can not be accessed
transparently, can be countered by the use, where necessary, of transparent gateways.

9.4 TRANSPARENT GATEWAYS

For Oracle databases, Transparent Gateways are software products which fit between
the local application’s Oracle database and the remote non-Oracle database. (Of
course, where the remote database is also Oracle then no gateway software would be
necessary.) These products are available from Oracle Corporation itself as well as
from many other suppliers.

An example of a gateway product is the Oracle Transparent Gateway to Microsoft
SQL Server. This product allows Oracle client applications to access SQL Server data
transparently. The gateway, in conjunction with the Oracle7 server, creates the
appearance that all data resides on the local Oracle7 server, even though data might be
widely distributed.

If in the future it were decided to change the implementation of the remote database,
from SQL Server to, say, Oracle7 (or, for that matter, to any other RDBMS assuming
the appropriate gateway product was available), no changes in client application code
would be necessary because the gateway handles all differences in datatypes or SQL
functions between the application and the database. The diagram below illustrates the
architecture.

COMMERCIAL IN CONFIDENCE Page 57 of 81

FUJ00098223

FUJ00098223
ICL Pathway Host Applications Database Design and Ref: TD/STD/0001
Interface Standards Version: 3.0
Date: 29/4/99
) 00|
= e,
(Il il
n | |
i : i ,
— =z | -
Sql*Net
V2
Client Applications gl] Microsoft SQL

Remote Transparent

Gateway Server Server Database

Integrating Server

Local Oracle
Database

Figure 4 - Transparent Gateway Architecture and Components

The Oracle7 server connects directly to the gateway and thus facilitates heterogeneous
queries against Oracle7 and SQL Server data. It also post-processes Oracle7 SQL
functions which are not supported by SQL Server. The gateway runs as an NT service
at the remote location.

The main drawback in using a transparent gateway is that the performance of access
through such a link is never going to be as good as a link between databases of the
same type. Careful consideration should therefore be given as to the wisdom of using
heterogeneous databases where very large volumes of data have to be shipped quickly
between them.

9.5 APPLICATION INTERFACE STANDARDS

9.5.1 NOMENCLATURE

In the following sections, the local application is defined as being the one which is
accessing the data, the remote application as the one which owns the data to be
accessed. Although a remote application is usually on a different database, there is no
reason why it should not be within the same physical database.

9.5.2 DOCUMENTING THE INTERFACE

For every interface which involves the passing of data between applications, whether
internally or externally, there must exist an Application Interface Specification, which
defines all aspects, both physical and logical, the interface. This document must be
written in the format required by Pathway’s On-Line Standards.

9.5.3 DEFINING THE INTERFACE DATA

The data to be passed across the interface is defined within the remote application’s
database. This data must be presented to the local application as a set of objects
existing within an interface user on the remote database. For each interface with
different access requirements there must be a separate user. The schema for the
interface user must contain only those objects which are relevant to that interface and
which are defined in the associated Application Interface Specification.

COMMERCIAL IN CONFIDENCE Page 58 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

A basic premise of using an interface user is that the remote application itself must be
unaware of the existence of the interface user, even though it exists within the same
database. If there are changes to the local application which require different data to
be passed from the remote application, then this must only affect the schema of the
interface user, it must not require changes to be made to the remote application itself.
Likewise, if the schema of the remote application changes, this must not be allowed to
affect the format of the data which the local application extracts from the interface
user.

The diagram below illustrates the environment for a remote application, D, which
provides data to distributed applications A and B, as well as to a third application, C,
which happens to exist within the same database.

-« Interface
Local Application A Schema for
Application A Remote
Application D
Database X
Interface
Schema fi
/ Ap;f;:zoﬁr}a Interface Schema
for Application C
/ Local Application C
Local Application B
Database 7
Database Y

Figure 5 - Inter-Application Communication using Interface Users
The objects which exist in the interface user’s schema can be:

e views of data which exist in base tables within the remote application’s schema.
Unless there is a time-dependency on the data which is to be passed across the
interface, this is the mechanism which should be used;

e tables which are used only for the passing of data across the interface. Typically
these tables would be created daily by a process which extracts a snapshot of data
from other tables within the remote application. Transient data must be presented
to local applications within this type of interface table;

e views of interface tables which exist in the schemas of other applications’
interface users, within the remote application.

COMMERCIAL IN CONFIDENCE Page 59 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

9.5.4 NAMING OBJECTS AND SYNONYMS IN THE INTERFACE USER

Within an interface user the only objects which should exist are the control tables,
which are defined below, and the transient tables. All other objects that require to be
accessed only exist as synonyms within the interface user.

If there are no transient tables to be transferred across the interface, no tables at all
need to be defined within the interface user.

The naming standards for the transient tables can be found in section 3.4.2. The
synonyms should just have, as for normal functional tables, short, meaningful, plural
names. No further qualification is required as the objects and synonyms within the
interface user on the remote machine must be accessed on the local machine either
using the database link qualifier, or via a locally defined synonym.

The synonyms defined on the local machine should be named according to the
standards in section 3.5.2.

9.5.5 INTERFACE CONTROL IN THE REMOTE APPLICATION

If transient tables are to be used for the transferral of data across an interface, then the
schema for that interface user must contain a set of control tables to hold information
about:

e any transient tables which are to be created in the interface user, and;
o all the distributed local applications which can access those transient tables.

The primary purpose of these tables is to ensure that data is not purged from the
remote application before it has been accessed and secured by all local applications. It
is also there to provide information to support staff to enable them to monitor remote
access.

A Data Diagram of the control tables required is shown below.

COMMERCIAL IN CONFIDENCE Page 60 of 81

ICL Pathway

FUJ00098223
FUJ00098223

Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0

Date: 29/4/99

Distributed Local Apps

Within the remote application,
this table contains a row for every
local application which can access
data from this interface user

Transient Tables

Contains a row for each type of
transient table which can be
created in the interface schema

*/"\

Local Application Interests

A row exists in this table for
every time-dependent table which
a particular distributed local
application may wish to access

Transient Table Creates

A row is created in this table
every time that a transient table is
created in the interface schema

/"\/';R

Application_Accesses

A row is created in this table
every time a local application
successfully completes accessing
a transient table

Figure 6 - Data Diagram of Control Tables within the Interface Schema of

a Remote Application

These tables are defined in more detail below.

Distributed Local Apps
Column name Null? Datatype Description

Application_Name N varchar2(8) The name of the distributed local application.
Primary Key

Application_Desc N varchar2(240) A description of the distributed local

- application

Access_Notes Y varchar2(240) A free-text description of when this
application is expected to access the data
within the interface tables.

COMMERCIAL IN CONFIDENCE

Page 61 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

Transient Tables

Column name Null? Datatype Description

Root_Table Name N varchar2(16) The name of the transient table before the
suffix, as defined in section 3.4.2.

Primary Key

The maximum number of instances of this
table which are allowed to exist
simultaneously in the interface schema

Archive Purge N varchar2(1) AorP

Defines whether the transient table is
archived or purged when a table becomes the
oldest table and the maximum number of
instances is about to be exceeded.

Maximum_Allowed N number(4)

Local Application Interests

Column name Null? Datatype Description

Root_Table_Name N varchar2(16) The name of the transient table before the
suffix, as defined in section 3.4.2.

Primary Key Component 1

Application_Name N varchar2(8) The name of the distributed local application.

Primary Key Component 2

Transient Table Creates

Column name Null? Datatype Description

Root_Table_Name N varchar2(16) The name of the transient table before the
suffix, as defined in section 3.4.2.

Primary Key Component 1

Table_Suffix N number(10) Format YYYYMMDDNN where
YYYYMMDD is the creation date and NN is
an optional second suffix if more than one
version of the table can be created on a
particular day.

Primary Key Component 2

Creation_Tsmp N date The date and time of the transient table’s
B creation
Number of Rows Y number(10) The number of rows within the transient table

Application Accesses

Column name Null? Datatype Description

Root_Table_Name N varchar2(16) The name of the transient table before the
suffix, as defined in section 3.4.2.

Primary Key Component 1

COMMERCIAL IN CONFIDENCE Page 62 of 81

FUJ00098223

FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

Application Accesses

Column name Null? Datatype Description

Table_Suffix N number(10) Format YYYYMMDDNN where
YYYYMMDD is the creation date and NN is
an optional second suffix if more than one
version of the table can be created on a
particular day.

Primary Key Component 2

Application_Name N varchar2(8) The name of the distributed local application.

Primary Key Component 3

Access_Tsmp Y date A timestamp of when the appli.cation
successfully completed accessing the
transient table

In addition to being a control table, the Application Accesses table can also be used as
the source of data for an audit trail of transfers of transient data across the interface.

9.5.6 USING SQL TO ACCESS DATA IN DISTRIBUTED DATABASES

The transparent gateway products allow SQL to be used to access data in distributed
databases. Ostensibly, any SQL constructs which can be used to access data on the
local database can also be used to access a distributed database through a transparent
gateway. However, to ensure that incompatibilities do not arise in the future, the
following standards must be followed when writing SQL to access data within other
applications:

¢ SQL must conform to the ANSI/ISO SQL standard;
¢ Row Ids must not be used in SQL statements;

e No assumption must be made about how the optimiser on the remote machine will
cause the SQL to be executed. This means, for instance, that SQL “hints” can not
be used to encourage the optimiser to perform particular SELECTS in parallel.

9.5.7 HOUSEKEEPING OF THE REMOTE INTERFACE USER

If the interface user within the remote application is used to transfer transient tables, it
is necessary for these tables to be housekept at regular intervals. This is achieved by
processes which access the control tables within the interface user, and, from the
information within them, decide on whether the transient tables should be purged or
archived. These processes are scheduled to run nightly after all the day’s accesses by
distributed applications are expected to have finished.

A typical housekeeping process operates by performing a table scan of the
Transient Table Creates table. For every entry found there it reads the
Local Application Interests table using the root table name as a key to discover
which distributed local applications are expected to access this table. It then
interrogates the Application Accesses table to check that all distributed applications
have successfully accessed the table. If this has happened then, depending on the
setting of the archive or purge attribute on the 7ransient Tables table, the interface
table is either archived (see section 6 for details) and then dropped, or just dropped.

COMMERCIAL IN CONFIDENCE Page 63 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

Simultaneously with dropping the interface table, the corresponding record in the
Transient Table Creates table 1is deleted together with all subsidiary
Application Accesses records.

This mechanism should pose few problems if the housekeeping process can purge
tables at regular intervals. If, however, it is unable to drop any of the transient tables
for any length of time, perhaps because one of the distributed applications has been
off-line for an extended period, then data is going to build up within the interface user.
The housekeeping process must therefore be able to detect whether this is going to
result in the number of tables exceeding a pre-defined maximum. It does this by
counting the number of instances of a particular table which are in existence, and
checking it against the maximum_allowed attribute on the objects table. If the number
exceeds this maximum, an alert is raised to allow system support staff to take
remedial action.

9.5.8 ACCESSING REMOTE DATA FROM A LOCAL APPLICATION

If a process which is running on a local application requires data from a remote
application’s database and that database is not available, maybe because the interface
tables are locked by the remote application or because the remote database is shut
down, then clearly that process is not going to be able to complete successfully. It is
important, however, that the process within the local application does not just fall
over. The module which is running the extraction process must be coded in such a
way that it is aware that the information it is reading is being obtained from a remote
source, and that that information may possibly not be accessible at the time.

There are a number of ways that the module can be coded to do this invisibly. The
easiest is for the extraction process to run as a daemon which polls the interface tables
Transient Table Creates and Application Accesses in the remote interface user at
regular intervals to see if there are any tables which require extraction. If these tables
can not be accessed, or the tables to which they refer can not be accessed, then the
daemon should wait for a pre-defined period of time and try again. Only if the daemon
has waited for an excessive amount of time (again pre-defined) should it fail with an
alert to systems support.

COMMERCIAL IN CONFIDENCE Page 64 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

10. MAPPING APPLICATIONS TO DATABASES

10.1 GENERAL PRINCIPLES

In the Pathway environment there are many database applications which have to be
implemented during the lifetime of the project. Most of these applications are
intrinsically separate from one another but, at the same time, have some dependencies
on one another. This poses a question as to whether particular applications should co-
exist with others in the same database, or whether they should exist in separate
databases, or whether there should be some sort of half way house whereby some go
in one database and some in another.

When faced by this dilemma, the database designer’s initial position should always be
that all applications should be put together within a single database because this is
obviously the simplest implementation. There is little point in adding complexity just
for the sake of it. The designer should then allow himself to be argued out of this
position.

There are clearly many valid reasons why applications should be put into separate
databases. However there is frequently confusion as to what are and what are not valid
reasons. It might initially appear logical to have each application in its own database.
This impression is often reinforced by the way people refer to applications. For
instance, if an organisation has an orders application, it inevitably will be referred to
as the “Orders Database” rather than the “Orders Application running on Database X
However this apparently logical solution is only occasionally the best implementation.

Databases should be seen merely as receptacles for applications. As soon as
applications are split into separate databases, the complexity of the environment
immediately increases as each of the multiple databases has its own systems
management, configuration and backup systems to administer.

10.2 APPLICATION SEPARATION CRITERIA

The criteria which need to be considered when deciding on whether applications
should share the same database or not are:

1. Do the applications perform broadly similar sorts of functions? For instance, it is
unlikely to be suitable for a data warehouse application to be in the same database
as a volatile OLTP application.

2. Do the applications have similar availability requirements? It may be unsuitable to
have an application which operates an on-line day with limited overnight batch
work in the same database as one which operates a 24 hour-a-day Help Desk
service.

3. Are the security requirements of the applications similar? It is, for instance,
impractical for an application which can be accessed via the Internet to be in the
same database as one which contains sensitive information.

4. Are the backup/recovery requirements broadly similar?

COMMERCIAL IN CONFIDENCE Page 65 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

5. Is the performance of one application likely to be detrimental to that of another?

6. Are all the applications in the database equally well tested? If an application is
likely to fail and require point-in-time recovery, it should not co-exist in the same
database as those that are not. One of the reasons for this is that Oracle does not
support partial recovery of a database to a point-in-time: either all the applications
in the database are recovered to a particular point-in-time or none of them are.

7. Are the resilience requirements of the applications similar? Applications should
not share the same database if one requires site failover disaster recovery using
SRDF on the EMC discs and the other does not.

8. Is there are a large volume of data which has to be passed between applications? If
so, then performance is likely to be optimal if they share the same database. If it is
decided to do this, it is, of course, still essential for the applications to
communicate with one another using the mechanisms described in section 9.5.

COMMERCIAL IN CONFIDENCE Page 66 of 81

FUJ00098223

FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

11. PERFORMANCE

11.1

11.2

11.3

11.4

This section contains advice on how applications should be written so that they
perform optimally. Although it is aimed specifically at applications which make use of
Oracle on the Sequent SMP machines using Dynix, the advice within it is also likely
to be relevant to Oracle applications running on other platforms.

HINTS AND OPTIMISERS

There are two different optimisers provided with the Oracle RDBMS; the Cost Based
Optimiser (CBO) and the older Rule Based Optimiser. Within Pathway all
applications should make use of the CBO as this is likely to provide the best
performance for the majority of queries.

The main problem with using the CBO is that its optimisations are dependent on the
size of the tables within the database, and on how frequently those tables are analysed
using the ANALYZE function. This means that the optimisations arrived at by the
CBO are likely to be different for small test databases to those arrived at for full size
live databases. This makes it difficult to test the performance of the live systems.

The recommendation is therefore that “hints” are always used with the CBO for all but
the most simple of queries. A hint overrides the CBO and ensures that the query is
performed in the manner intended by the designer, whatever the populations of the
underlying tables.

OPTIMISATION OF SELECTS ON THE SMP PLATFORM

The host system Sequent SMPs used by Pathway each have within them a minimum
of ten CPUs. Consequently the Parallel Query Option (PQO) should be used for nearly
all queries on tables with significant populations.

It is essential that all queries which use PQO are volume tested on a life size test rig so
that the optimal query mechanism can be specified within the query’s hint.

INDEXES VS. PARALLEL JOINS

It is beyond the scope of this document to go into great detail about the use of PQO.
Detailed information on the use of PQO can be found within the Oracle7 Server
manual entitled “Tuning”. However, it is worth noting that experience with PAS/CMS
has shown that, for almost any batch process which accesses more than about 1% of a
table, better performance is obtained by using a parallel, full table scan with a hash
join than is obtained by using table indexes.

RECORD DELETION

Record deletion using the SQL DELETE function is usually slow, can impose
significant performance overheads on the remainder of the system, and can lead to
fragmented tables.

COMMERCIAL IN CONFIDENCE Page 67 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

It is recommended therefore that, if many records are frequently to be deleted from a
table, the records are not actually deleted at the time of their deletion but are instead
marked as being logically deleted by updating a logical deleted column defined on the
table. The logically deleted records are then removed by a housekeeping procedure
that runs at a time of low activity. If there are no foreign key constraints specified on
the table, the most efficient method of achieving this is to use the “Create Table... As
Select... Unrecoverable” construct to create a new table from the old using a query
that would only select those records with a null logical deleted column.

11.5 LOADING

Experience with PAS/CMS has shown that, if a large number of records are to be
loaded into a database in as short a time as possible, it is more efficient to run a
number of separate unrecoverable processes (DIRECT=TRUE, PARALLEL=TRUE)
each of which loads a part of the table than it is to make use of the Oracle Parallel
Direct Load function.

11.6 FOREIGN KEY CONSTRAINTS

Foreign key constraints should be used with caution as their presence imposes
significant overheads for all processes which either insert new records into tables or
update the foreign key columns within existing records. This is particularly pertinent
to the host applications in which large numbers of transaction records are regularly
loaded and unloaded.

If a foreign key constraint is defined, the join column within the superior table must be
indexed unless there are compelling reasons against doing this.

11.7 WRITING OUT DATA TO FLAT FILES

Although still relatively slow, the most efficient method for writing records from an
Oracle database to flat files is to use C programs which select arrays of records from
the Oracle tables and then write them directly to files. If many files are to be written in
as short a period of time as possible, then the number of these processes can be
paralleled to a high degree.

11.8 USE OF ORACLE SHARED LIBRARIES

In order for compiled pro*C programs to run successfully, it is necessary for them to
be linked to Oracle libraries. This linking can either be static or dynamic. If it is static,
a physical copy of the library is attached to the executable program when it is
compiled; if dynamic, the program dynamically links to a shareable Oracle library at
run-time.

There are two main advantages to using dynamic linking:

1. The size of the executable program is considerably smaller leading to gains in
memory efficiency.

COMMERCIAL IN CONFIDENCE Page 68 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

2. If dynamic linking is used for all programs, it can be guaranteed that the same
version of the Oracle libraries is being used by all programs.

Performance testing of the TPS application has shown that dynamic linking to
shareable libraries imposes no perceptible performance costs.

All Pro*C programs developed for the Pathway host applications should therefore use
dynamic linking to shared Oracle libraries.

COMMERCIAL IN CONFIDENCE Page 69 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

12. BACKUP AND RECOVERY

12.1 THE REQUIREMENT FOR BACKUPS

All of the data for the live host system applications should be contained within
databases which exist on the mirrored discs within the EMC Symmetrix Storage
Units. The discs within these units are not only mirrored locally, they are also
replicated and mirrored at a remote site by means of SRDF over the E3
telecommunications link. There are always therefore four copies of the live database
in existence: two copies mirrored locally and two remotely.

The database is therefore inherently secure both against media failure and site loss.
Although this means that it is exceedingly unlikely that database recovery will ever be
necessitated by hardware failures, it does not remove the requirement to back up the
database because corruptions on all four mirrors can still conceivably occur as a result
of:

e operator or DBA errors;

e application program or scheduling errors;

e incorrect external data being erroneously loaded into the database;
e catastrophic failure of the EMC Storage Systems.

It is therefore essential to ensure that recent backup copies of the database exist at all
times so that the database can be recovered, without the loss of any data, should any
such corruption occur.

12.2 BACKUP STRATEGY

With the exception of the PAS/CMS application, none of the host applications which
are currently known about have a requirement for a database which is up and running
for twenty four hours a day. This means that all host applications can be backed up
whilst the database is shut down. This makes for a considerably simpler backup
strategy than would be necessary were it not possible to shut down the database.

The strategy to be adopted by all host applications involves the taking of a cold
backup after the database has been shut down. The strategy must have the following
features:

e The backup processes must all be scheduled by Maestro.

o After all the overnight batch processes have finished, the database is shut down for
the backup.

¢ A cold backup of all the raw volumes and filesystems underlying all the database’s
control files, online redo logs, archived redo log files and data files is made to tape
twice each day.

COMMERCIAL IN CONFIDENCE Page 70 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

e All backups taken are made to DLT tape in the standalone tape libraries. The
OSBM and ESBM software is used to perform the backups and manage the tapes
so produced.

e Once the backup has finished successfully, all archived redo logs produced since
the previous backup are deleted from disc.

o The database is restarted once the backup has been successfully completed.
e A cycle of seven backups (i.e. backups for a week) is maintained by ESBM.

o After the backup has been completed, the second tape copy is removed from the
tape library and transported to the remote Pathway computer site where it can be
used to recover the database there should this prove necessary.

Unless the application has some very specific backup and recovery requirements, no
bespoke code should be written to implement any part of an application’s backup or
recovery strategy. All that is necessary is for the OSBM and ESBM backup
management products to be configured to perform the backup, and for Maestro scripts
to be updated to include the backup in the daily schedule.

COMMERCIAL IN CONFIDENCE Page 71 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

13. RESILIENCE

13.1 MIRRORING

All the database data files for a live host application must be placed on EMC
Symmetrix discs, which are locally mirrored using the standard EMC hardware
mirroring facilities.

For Oracle databases, the online redo logs should also be mirrored at the EMC
hardware level. Mirroring at the Oracle level using redo log groups is not
recommended. If it is decided to invoke redo log archiving, the redo log archives
should also be mirrored on the EMC discs.

13.2 DISASTER PROVISION

It must be possible to recover all host applications without the loss of any data should
the site at which the applications normally run be totally destroyed.

This requirement is satisfied for the Sequent systems by placing all live host system
databases on the EMC Symmetrix discs. These discs must be locally mirrored using
the EMC hardware and remotely mirrored using SRDF, as illustrated in the diagram
below.

Sequent Symmetry SE70

'

EMC Symmetrix Disc Unit | SRDF over E3| EMC Symmetrix Disc Unit

N
0]
Q
&
2
.
=
()
3
wn
T
~
(=}

: ,
—— ——
Application Data ~ Redo Logs Application Data ~ Redo Logs
Mirrors 1 & 2 Mirrors 1 & 2 Mirrors 3 & 4 Mirrors 3 & 4
Primary Site Secondary Site

Figure 7 - Fully Resilient Host Application Configuration

COMMERCIAL IN CONFIDENCE Page 72 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

14. CONSISTENCY CHECKING

14.1 REQUIREMENT FOR CONSISTENCY CHECKING

The logical and physical consistency of an application’s data on the database must be
checked at regular intervals. This is necessary for three reasons.

o If the database is shown by the consistency procedures to be corrupt, this allows the
inconsistencies to be identified and fixed at an early stage, hopefully before they
cause application failures or spawn more inconsistencies.

o If the database is shown by the consistency procedures to be clean, this gives
support staff and users confidence in the quality of the data held within the
database.

e If an application module fails or reports exceptions due to inconsistent data, a
consistency checking procedure can be run to ascertain the extent of the corruption.

14.2 CONSISTENCY CHECKING PROCEDURES

For Oracle-based applications, the physical consistency of the data within the
application’s schema should be checked regularly by using the DB_VERIFY utility on
the backup files.

If an application’s relationships between tables are defined on the repository using
foreign key constraints and the schema is generated directly from the repository, then
the scope for there to be logical inconsistencies within the database is vanishingly
small. This is because, when foreign keys are defined, the RDBMS checks for logical
consistency before records are inserted, updated or deleted. Often, however, foreign
keys are not so defined because their existence can lead to poor performance. This is
caused by the requirement to access superior records using the join column whenever
subsidiary records are inserted, deleted or have the join column updated (see section
11).

Wherever there are logical relationships between tables (or, in fact, between columns
within the same table) that are not implemented using foreign key constraints, a
module (or modules) should be written that specifically checks for the existence of
records in the superior tables for all records with non-null values in the join columns
in the subsidiary tables. This module should then be scheduled to run at least once a
month.

If the module finds any inconsistencies, it should write them to an exceptions table
(see section 8) and raise an alert.

14.3 RESOLUTION OF INCONSISTENCIES

Logical or physical inconsistencies are detected within an application’s data either by
the consistency checking procedures or by the application producing incorrect results.
If such inconsistencies are detected then the first consideration should be given to

COMMERCIAL IN CONFIDENCE Page 73 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

recovering the database using a recent backup and then performing point-in-time
recovery to a time before the corruption occurred.

Often, however, this course of action is not practical, either because the source of the
corruption can not be easily identified, or because the corruption happened so long
ago that it is not possible to recover updates which occurred after the point-in-time to
which the recovery must be performed. It should additionally be noted that point-in-
time recovery is not likely to be a viable option at all for applications which include
on-line updating via a Help Desk or via some other interactive function.

If point-in-time recovery is not possible, then the actions which should be taken to
resolve the situation are as follows:

1. The scope of the problem must be ascertained by querying the live database using
the appropriate query tool.

2. Assuming that recovery is not possible, the corrupt parts of (or all of) the live
database are copied to a test database.

Scripts are developed to back out the corruption.
Said scripts are tested on the test database.
Live database is backed up.

Scripts are run on the live database.

N e kW

Live database is checked for correctness using the appropriate query tool.

COMMERCIAL IN CONFIDENCE Page 74 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

15. SECURITY

156.1 SECURE ORACLE BUILD

15.1.1 SECURITY REQUIREMENTS

The security requirements of Pathway’s application databases are fully defined in refs.
[2] and [3]. In order to meet these requirements, it is necessary for the application
databases which make use of Oracle to be built such that they use the security
facilities provided by the RDBMS. The following sections define the actions that need
to be taken to satisfy the requirements for the Oracle RDBMS version 7.3 4.

15.1.2 DATABASE LINKS TO INTERFACE USERS

The use of database links to communicate information from one database to another is
described in section 9.5. This method of communication requires the existence of an
interface user for the link within the database from which the information is to be
extracted. To ensure the security of the defined link, the following principles must be
applied:

e When a database link is created on the local machine, it is necessary to specify both
the username and the password of the interface user on the remote machine to
which the local application is to connect!. As a consequence of this, the password
of the interface user is visible on the local machine within the SYS.LINKS$ table.
Although only those with the DBA role applied can normally see this table, it is
still necessary to minimise the security risk which this limited visibility provides.

As a consequence, it is essential that the interface user on the remote database has
the minimum number of privileges granted to it and that only those objects which
are required for the link exist in that user. Neither UPDATE, INSERT, DELETE
nor ALTER privileges must not be granted to the interface user for any of the
application tables which exist outside of that user. In this way any damage which
could be done by malicious access via the database link is minimised.

e The initialisation parameter DBLINK _ENCRYPT_ LOGIN should be set to TRUE
for all databases. This ensures that the password is always encrypted when passed
across the link.

15.1.3 SESSION LEVEL AUDITING

All Pathway databases must have auditing enabled such that audit information is
written to the database table SYS.AUDS$?. This is achieved by setting the

!t is possible to get around this restriction by ensuring that the userid and password on the
local machine are the same as those of the interface user on the remote machine. This
technique is, however, not recommended as it creates artificial dependencies between the
databases.

2 By default, the SYS.AUDS$ table is placed in the system tablespace. To avoid contention with
system objects, this table should be re-created in another tablespace.

COMMERCIAL IN CONFIDENCE Page 75 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

AUDIT TRAIL initialisation parameter to DB, and invoking the AUDIT SESSION
command.

Auditing should be enabled using the following statement audit options:

ALTER SYSTEM Audits all changes to the Oracle system.

ROLE Audits all creates, alters, sets and drops of roles.

SESSION Audits all connects and disconnects.

SYSTEM GRANT Audits all grants and revokes of roles/privileges to/from
users/roles.

USER Audits all creates, alters, sets and drops of users.

The audit trail should itself be protected by invoking the command below as part of
the initial build.

AUDIT INSERT, UPDATE, DELETE
ON sys.aud$
BY ACCESS;

15.1.4 ORACLE USERS

The minimum number of Oracle users with the minimum number of privileges
granted to them should be set up for a host system application. The standard users
with which an application should be delivered by developers are defined in section
15.2.4. The manner in which these and other users should be set up are described in
this section.

15.1.4.1 APPLICATION USERS AND BATCH/DAEMON PROCESSES

Most of the batch and daemon processes that are run within a host system application
are processes that are directly invoked via Maestro from the host system’s operating
system. Oracle does not therefore need to perform user authentication for these
processes as this will already have been performed by the operating system.

Consequently, for a Pathway application, the Oracle user that owns the application’s
schema, and under which all batch and daemon processes must be run, should be set
up as an externally authenticated user. An externally authenticated user, in Oracle
terms, is a user for which password authentication is not done by the RDBMS.

By default, for an Oracle database, externally authenticated users all have a prefix of
ops$, though this prefix can be changed for particular databases by setting the
OS_AUTHENT PREFIX initialisation parameter. For Pathway applications, the
ops$ prefix should be retained on all databases so that it is obvious which are the
externally authenticated users.

As with all other Oracle users that are set up within a Pathway database, the user that
owns the application schema should be set up with the minimum number of system
privileges necessary to run the application. This means, for example, that the
application owning user should never be granted the DBA role.

COMMERCIAL IN CONFIDENCE Page 76 of 81

FUJ00098223
FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

15.1.4.2 HUMAN USERS

All host system Oracle databases should be delivered to CM by the development
teams with no users defined through which humans can connect in client/server mode.
The only exceptions to this rule are SYS and SYSTEM, as described in section
15.1.4.3, and those users that are necessary for the successful operation of products as
described in section 15.1.4.4.

As part of the build process, the SYSTEM user should be used to create the necessary
human users to enable the application to be run and supported in the manner required
by the environment into which the application is being installed.

15.1.4.3 SYS AND SYSTEM USERS

The developers of an application should initially assign obvious passwords, which are
defined in the database’s Installation Guide (see section 4.1), to the SYS and
SYSTEM users. During the installation process, the installers should use the
SYSTEM user to perform any necessary system installation procedures and to set up
any necessary human users. Once this has been completed, the SYS and SYSTEM
users should be disabled by assigning to them impossible® passwords, such that no
human user can connect into them.

Subsequent to this, any necessary database administration activities are undertaken by
a CFM user who has the CFM_DBA role enabled.

15.1.4.4 PRODUCT USERS

Many products that make use of an Oracle database have their own users created for
them in the database. Two products that are used on most Pathway Oracle databases
and that fall into this category are BMC’s Patrol and Oracle’s Discoverer. The set up
of Patrol on the server creates a user called PATROL and the Discoverer administrator
creates a user for the public end user layer.

As with the SYS and SYSTEM users, any users created for products should be
assigned obvious passwords when the database is first delivered. The installers of the
application should then change these passwords and secure them once the installation
of the application is complete.

15.1.5 USE OF INTERACTIVE SQL*PLUS

Under normal circumstances SQL*Plus should not be used interactively on any of the
Pathway production databases. If, however, an emergency requires that the product is
used in this manner, then the following safeguards must be taken to minimise the
possibility of misuse.

¢ SQL*Plus must never be used in client/server mode. To access SQL*Plus, a user
must first log into a Dynix session via COS/Manager and then use operating system
authentication (i.e. using an OPSS$username if the OS_AUTHENT_ PREFIX
initialisation is set to OPSS$) to connect to Oracle using the command ‘sqlplus /°.

3 An impossible password is one that contains one or more characters that are not
alphanumeric characters from the database character set. To set such a password, the command
used could be: ALTER USER scott IDENTIFIED BY “no way@all!”.

COMMERCIAL IN CONFIDENCE Page 77 of 81

FUJ00098223

FUJ00098223

ICL Pathway Host Applications Database Design and Ref: TD/STD/0001

Interface Standards Version: 3.0
Date: 29/4/99

o There exists a table in the SYSTEM account, PRODUCT USER PROFILE, which
is there to provide additional security at the product-level. By inserting rows into
this table, users can be prevented from using SQL*Plus to execute specified DML,
DDL or SQL*Plus commands. The table below defines the minimum rows which
should be inserted into this table for all Pathway production databases.

Columns in PRODUCT USER PROFILE Reason
PRODUCT | USERID | ATTRIBUTE CHAR VALUE
SQL*Plus % CONNECT DISABLED Prevents all users from

connecting to the database as a
different user.

SQL*Plus % HOST DISABLED Prevents all users from invoking
host system commands from
within the SQL*Plus session.

SQL*Plus % NOAUDIT DISABLED Prevents any user from disabling
auditing.

156.2 ACCESS CONTROL

15.2.1 ACCESS CONTROL DESCRIPTION

Each application that is developed as part of the Pathway programme must have
associated with it an Access Control Matrix. This matrix specifies who can access
what. It cross references the various groups of users with the schema objects to which
they require access.

Assuming that the roles and users have been set up correctly in the Designer/2000
repository, the matrix could be generated directly from the data therein.

15.2.2 STANDARD ACCESS CONTROL MATRIX FOR ALL PATHWAY
APPLICATIONS

Users requiring access to an application database are first of all grouped together by
virtue of their requirements to access common objects within the database. These user
groupings map on to roles as defined for Oracle databases. A role is made up of a set
of privileges to perform various actions upon various objects within the database*. A
role can be assigned to a user or another role.

The minimum set of roles that must be defined for all of Pathway’s application
databases are defined in the table below.

Role Expected Users Human Objects Accessed and Type of
Users? Access

AUDITOR Internal and External Auditors Yes As for MONITOR, plus the ability

to interrogate the Oracle audit table
(SYS.AUDS$) and views.

*In Oracle terms, these privileges are Object Privileges. Oracle Roles can also include System
Privileges which allow the grantee to perform particular database operations or classes of
database operations. Other than the CFM_DBA role which has the DBA role applied to it,
none of the roles defined in the table above include any system privileges other than those
bestowed by virtue of having the CONNECT and RESOURCE roles applied.

COMMERCIAL IN CONFIDENCE Page 78 of 81

ICL Pathway

Host Applications Database Design and

Interface Standards

Version: 3.0
Date: 29/4/99

FUJ00098223
FUJ00098223

Ref: TD/STD/0001

Role Expected Users Human Objects Accessed and Type of
Users? Access
BMC BMC Patrol & Knowledge No Select and update access on all the
Modules exception tables in the database,
plus the ability to interrogate the
Oracle audit table (SYS.AUDS$) and
views.

BSU Pathway Business Support Unit Yes As for MONITOR, plus the ability
to update / insert application objects
for which the BSU have pre-defined
forms provided.

CFM_DBA CFM database administration - Yes Full DBA privileges for the CFM

privileged DBA group database administrators

MONITOR All users who require query Yes Select only access to all objects

only access to the application. within the application.
This includes all users of query
tools such as Discoverer.
SECURITY_ | Support staff who are Yes Systems privileges for maintaining
MANAGER authorised to administer users and for selecting all tables and
support users and to investigate views in the database.
security breaches. Systems privileges assigned:
GRANT ANY ROLE
CREATE ANY USER
ALTER ANY USER
DROP USER
SELECT ANY TABLE

SSC Pathway SSC Yes As for MONITOR, plus the ability
to update / insert application objects
for which the SSC have pre-defined
forms provided.

T™S TMS Agents only. No human No Select / Update / Insert privileges as

users are expected to use this required on all objects which are
role accessed by the TMS Agents.

In addition to these roles, one or more application specific roles must be provided to
allow the users assigned for running the batch processes access to the application

objects.

15.2.3 HYPOTHETICAL EXAMPLE OF AN ACCESS CONTROL MATRIX

In order to clarify what is required, there follows an example of an access control
matrix for a hypothetical cut-down CMS database. This database might contain the
following ten tables which are split into object groupings.

Object Name Object Group
action_audit_trails Application Control
application_parameters Application Control
card order requests CMS Objects
cardholder_excptns Exception Objects
cardholders CMS Objects
cards CMS Objects
mis_ordered cards MIS Objects shared with CMS
process audit_trails Application Control
tms_rx_card events TMS Objects shared with CMS
tms_tx_cardholder changes TMS Objects shared with CMS

COMMERCIAL IN CONFIDENCE

Page 79 of 81

FUJ00098223

FUJ00098223

Ref: TD/STD/0001
Version: 3.0
Date: 29/4/99

ICL Pathway Host Applications Database Design and

Interface Standards

The groups of users who may access these object groups could be as described in the

table below.

Role Target Users Human User?
AUDITOR Auditors Yes
BMC BMC Patrol & Knowledge Modules No
BSU Pathway Business Support Unit Yes
CFM DBA CFM database administration - privileged DBA group Yes
CMS All CMS functional processes No
DW Data Warehouse extraction procedures No
MIS MIS extraction procedures No
MONITOR All query only users Yes
SSC Pathway SSC Yes
TMS TMS Agents No

The access types used in the access control matrix itself are defined below.

Access Type Meaning

D - | Delete rows from table

E - | Execute DDL (e.g. TRUNCATE, CTAS)

I - | Insert into table

Q - | Query, or select of rows from table

U - | Update rows in table
All - | All privileges available (Q, I, U, D and E)

A - | Alter Tables (e.g. Add/Delete columns to/from tables)
-- - | No access allowed

The Access Control Matrix would then appear as below.

15.2.4

Role Object Groupings
Application CMS T™S MIS Exception Oracle
Control Objects Objects Objects Objects Audit
(shared (shared Objects
with CMS) | with CMS)

AUDITOR Q Q Q Q Q QI
BMC -- -- - - QU I
BSU Q Q Q Q Q I
CFM_DBA All All All All All All
CMS QLU All Q,LU,D QLU QI I
MIS Q -- -- All -- I
MONITOR Q Q Q Q Q I
SSC Q.LUD Q Q Q Q I
SECURITY_ | Q Q Q Q Q Q
MANAGER
TMS Q -- All - - I

STANDARD USERS FOR ALL PATHWAY APPLICATIONS

When an application is first handed over by the developers, it must have a basic set of
Oracle users set up. These users, and the roles which need to be assigned, are defined

in the table below.
User Grants
bme_user granted CONNECT, MANAGE TABLESPACE privileges

granted BMC role

ops$application
(this is the user
that contains the

application’s

granted CONNECT, RESOURCE privileges
+ any other application specific privileges

COMMERCIAL IN CONFIDENCE

Page 80 of 81

FUJ00098223

FUJ00098223
ICL Pathway Host Applications Database Design and Ref: TD/STD/0001
Interface Standards Version: 3.0
Date: 29/4/99
User Grants

schema)

tms_user granted CONNECT, RESOURCE privileges

granted TMS role

In addition, when the application is first delivered, the SYSTEM and SYS users are
enabled. It is only after the system has been built and the “human” users set up, that

the SYSTEM and SYS users are disabled as described in section 15.1.4.

15.2.5 DOCUMENTATION OF THE ACCESS CONTROL MATRIX

The access control matrix for an application must be documented fully on the
Designer/2000 repository using the method described in section 4.7.

156.3 SECURITY OF EXTERNAL INTERFACES

All access to or by agencies which are external to Pathway must conform to the
requirements laid down in ref. [2] and [3].

COMMERCIAL IN CONFIDENCE

Page 81 of 81

