DE/ION/006

ICL Pathway Memorandum

To: Phil Hemingway, Dave McDonnell, Steve Doyle, Les Ong, Brian Orzel,

Martin Smith, Steve Warwick, Alan Ward
CC:
From: Chris Humphries
Date: 12 March 1999
Re: EPOSS Product Improvement Options

FUJ00121099
FUJ00121099

Introduction

The following is a summary of the discussions of the workshops held on
25" February and 9" March, and also includes some post-25/2 workshop
input from Les Ong.

Candidate product improvement measures

The following measures were identified as possible ways of improving the
EPOSS product to enhance its maintainability and to reduce the risk of
severe operational problems.

Stock unit dil

This is too large and complex and would be better split into a number of
separate components, e.g. GUI, business rules, stock unit and user
admin, logon/logoff, stock unit balancing, weekly cash account.

Reporting

This is too generic and too complicated. Any attempt to modify it in one
place results in a proliferation of knock-on effects in other places. This
makes it hard, risky and time-consuming to make modifications to the
product. A number of requirements to make such changes will inevitably
arise in live service.

Either there should be one reporting engine for each of a number of
areas, or a new mechanism should be written for translating between
message store data and report formats, based on an analysis of the
underlying messages and data.

Attribute grammar

Document and take out any redundant attributes (not primary or
secondary mappings). The latter would entail reliance on the agent
documentation of the attributes used by the agent code.

Cash Account

Rewrite cash account report as a separate report. Bring it into line with

the POCL view of the cash account and align the two reference data
models. Possibly do the rewrite in C for performance.

Error handling
Implement error trapping, especially in the area of peripheral handling.

Business rule validation

Make the application enforce compliance of inputs with business rules.

Logic threads

Make sure that the flow of control through the programs correctly
implements the specified processing. Eliminate dead ends etc. caused by
e.g. business data errors.

Comments

Insert/review code comments.

Tidy-up code

Remove commented-out code and obsolete code. Use any available tools
to identify code that logically cannot be executed.

Modularise code

Separate business rule code and GUI code where this currently occurs in
the same object.

Document
Provide documentation of the revised system (this will require a certain

amount of documentation of the existing system as a pre-requisite for
change).

FUJ00121099
FUJ00121099

March 14, 1999

Error messages

Tidy up and make consistent the existing error messages. Currently the
messages use upper case inappropriately, are not always accurate and
are in need of general improvement.

Menu navigation

Make consistent the presence/absence and usability of the Prev Button.
Evaluation criteria

Each of the above improvement measures was evaluated against the
following set of criteria. The first two criteria tend in favour of
implementing a measure and the remaining three tend against.

Benefit

The benefit of implementing a particular improvement measure in terms of
the product's enhanced maintainability (time/effort/risk), stability, and

robustness.

Do nothing risk

Risk that if a particular improvement measure is not implemented, a
severe software problem will arise in live operation that is difficult or
impossible to manage and recover from. This could arise in the initially
released system or from an error implementing a subsequent change to
the software. There is also the risk that, due to poor maintainability, a
business-critical change could not be implemented within the required
timescale.

Destabilisation risk

The risk that implementing a particular improvement measure will
destabilise the product, leading to an position that is difficult or impossible
to manage and recover from.

Migration risk

The risk that, for a particular improvement measure, the process of
migrating in live service from the old product to the new product
embodying the measure will encounter unforseen difficulties, leading to an
position that is difficult or impossible to manage and recover from.

FUJ00121099
FUJ00121099

March 14, 1999

FUJ00121099
FUJ00121099

March 14, 1999

Cost

The time, effort and budget required to implement the measure.
Evaluation matrix

Each criterion is evaluated high (H), medium (M) or low (L). The cost

bands are, for code, unit test and link test, L: 0-10 man days M: 10-30
man days H: >30 man days.

Benefit |Do nothing |Destabilisation [Migration |Cost
risk risk risk

Stock unit dlf
Reporting
Attribute grammar
Cash Account
Error handling
Business rule validation
Logic threads
Comments
Tidy-up code
Modularise code
Document

Error messages
Menu navigation

ZIZIZ|IT|IZ|Z| |||
|l I ot ol 1 = Il = sl o o
T |T|(=Z || |=Z|=Z || ||
(|| ZIZ|=Z(XT|(T|xT|=
||z (Z(x|Z|=Z|x|x| x|

First cut evaluation
A first-cut evaluation of the above data is as follows.

Unweighted score moduli:
H=3

M=2

L=1

Score signs:
+ve for criteria tending in favour of implementing a measure
-ve for criteria tending against implementing a measure

Since there are two criteria tending in favour three tending against, a
weighting factor of 3 is applied to positive scores and 2 to negative
scores.

This gives the following scorecard:

FUJ00121099
FUJ00121099

March 14, 1999

Benefit |Do nothing [Destabilisation [Migration |Cost |Total
risk risk risk

Stock unit dll 9 9 B -4 -6 2
Reporting 9 9 -5 -5 -6 0
Attribute grammar 9 3 -2 £ -2 2
Cash Account 3 3 B B £ -12
Error handling 3 B -4 -4 £ -5
Business rule validation 3 3 -4 -4 -4 B
Logic threads 3 b -2 -4 -4 -1
Camments G 3 -2 -2 B -1
Tidy-up code &) 3 -4 -2 -4 -1
Modularise code 9 3 £ -2 -B -2
Dacument G 3 -1 -2 6 0
Error messages G 3 -2 -2 -2 3
Menu navigation = 3 £ -2 B -5

This gives the following ranking.

Benefit
Error messages 3
Stock unit dlf 2
Attribute grammar 2
Reporting 0
Docurment 0
Logic threads -1
Comments -1
Tidy-up code -1
Modularise code -2
Error handling -5
Menu navigation -5
Business rule validation -6
Cash Account -12

Second Workshop Discussion

The above evaluation was accepted as a starting point for discussion.

The below table summarises the points raised against each measure.

Measure Benefit |Comment

Error messages 3 Desirable but not a measure to enhance product
maintainahility and robustness.

Stock unit dlf 2 Too much effort to do all at once. May be possible to
split out modules one at a time, but a design is
needed first.

Attribute grammar 2 Most of the benefit comes from the documentation.
Redundant attributes is desirable for space saving, but
does not add much toward maintainability and
robustness.

Reporting 0 bore beneficial than Stock unit, but also needs prior
design befare decision can be made what to do in this
release and what, if anything, can be done later.

Document 0 Should be undertaken as modules are opened for
development work. YWaste of time documenting
existing stock unit and reporting modules.

Logic threads -1 Too risky. Deal with through error processing.

Comments -1 Implement as modules are opened for development
work.

Tidy-up code -1 Remoaval of obsaolete code too risky. Remaoval of
commented-out code to be implemented as modules
are opened for developrment wark,

Modularise code -2 Mot warth it.

Error handling -5 Implement high level error trapping immediately and
detail error trapping as modules are apened for
development work.

Menu navigation -5 Ma.

Business rule validation -b Ma.

Cash Account -12 Mo.

Conclusion

A Design activity will be undertaken to design the product improvement
implementations for Stock Unit and Reporting.
what development can be achieved within Release 2+ timescales. This
work will be scheduled. Some remaining work may be planned for later

releases.

A technical author will be engaged to document the attribute grammar.
The best person to do this would be Trish Morris, since she already knows

the subject area and the Counter Development team.

It will then be decided

FUJ00121099
FUJ00121099

March 14, 1999

FUJ00121099
FUJ00121099

March 14, 1999

High level error processing will be implemented across the product.

The following measures will be implemented progressively, as modules
are opened for development work:

Comment code.

Remove commented-out code.

Implement low level error handling.

Provide LLD module documentation.

